1
|
Oatis D, Balta C, Herman H, Ciceu A, Simon-Repolski E, Mihu AG, Lepre CC, Russo M, Trotta MC, D'Amico G, Casillo A, D'Amico M, Hermenean A. The interplay between lung galectins and pro-fibrotic markers in post-COVID-19 fibrogenesis: A pilot study. Life Sci 2025; 361:123326. [PMID: 39709167 DOI: 10.1016/j.lfs.2024.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
AIMS COVID-19, caused by the SARS-CoV-2 virus, can lead to serious lung conditions, notably interstitial pulmonary fibrosis. MAIN METHODS Our study tracked the progression of fibrosis markers in serial bronchoalveolar lavage (BAL) measurements collected from 16 COVID-19 patients at 1, 3, and 6 months post-infection. Additionally, BAL samples from 10 healthy control subjects were included. Using RT-PCR, ELISA, and immunofluorescence, we monitored molecular markers of fibrosis and investigated the interplay between galectins-1 and -3 and key pro-fibrotic mediators. KEY FINDINGS We found increased α-smooth muscle actin (αSMA)-positive macrophages and heightened levels of αSMA, TGFβ, and CTGF mRNA and proteins at six months compared to controls. Furthermore, galectin-1 and galectin-3 concentrations showed a time-dependent increase and correlated significantly with pro-fibrotic markers. SIGNIFICANCE These findings suggest that galectins contribute to fibrotic progression following COVID-19 and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Daniela Oatis
- Multidisciplinary Doctoral School, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania; Department of Infectious Disease, Faculty of Medicine, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania
| | - Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania
| | - Erika Simon-Repolski
- Multidisciplinary Doctoral School, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania; Department of Pneumology, Arad Clinical Emergency Hospital, 310031 Arad, Romania
| | - Alin Gabriel Mihu
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania
| | - Caterina Claudia Lepre
- PhD in Translational Medicine, XXXIX Cycle, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marina Russo
- PhD in National Interest in Public Administration and Innovation for Disability and Social Inclusion, XXXIX Cycle, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Anna Casillo
- School of Clinical Pharmacology and Toxicology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania; Department of Histology, Faculty of Medicine, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania.
| |
Collapse
|
2
|
Duong-Quy S, Nguyen Hai C, Huynh-Anh T, Nguyen-Nhu V. Tackling pulmonary fibrosis risks in post-COVID-19: cutting-edge treatments. Expert Opin Pharmacother 2025; 26:75-84. [PMID: 39628270 DOI: 10.1080/14656566.2024.2438322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Pulmonary fibrosis (PF) post-COVID-19 has been identified as an important complication of Long-COVID, especially in patients with severe respiratory symptoms. High-resolution computed tomography (HRCT) is the main tool for detecting fibrotic lesions in patients with PF post-COVID-19. AREAS COVERED We conducted a systematic review with the following objectives: (1) to summarize the incidence and disease burden of post‑COVID‑19 pulmonary fibrosis, (2) to provide information on available therapies and drugs for its management, (3) to comprehensively evaluate the initial treatment efficacy of these drugs, and (4) to identify the limitations and challenges associated with current treatment approaches. EXPERT OPINION Cutting-edge treatments for PF post-COVID-19 are focused on the complex and multifactorial nature of the disease progreession during Long COVID, which involves chronic inflammation, fibroblast activation, and excessive extracellular matrix deposition leading to stiffening and fibrosis of lung tissue. While traditional antifibrotic drugs with nintedanid and pirfenidone are being used, novel therapies with anti-interleukines, mesenchymal stem cells, and Rho-kinase inhibitors promise the new treatment approaches for patients with PF post-COVID-19. Further research and clinical trials are needed to determine the most effective strategies for managing this complex condition, with the goal of improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sy Duong-Quy
- Biomedical Research Centre, Lam Dong Medical College, Dalat city, Vietnam
- Outpatient Department, Pham Ngoc Thach University, Ho Chi Minh city, Vietnam
- Immuno-Allergology and Respiratory Department, Hershey Medical Center, Hershey, PA, USA
| | - Cong Nguyen Hai
- Department of Respiratory Diseases and Tuberculosis, 175 Military Hospital, Ho Chi Minh city, Vietnam
| | - Tuan Huynh-Anh
- Department of Respiratory Diseases, Hoan My General Hospital, Can Tho province, Vietnam
| | - Vinh Nguyen-Nhu
- Department of Respiratory Functional Exploration, University Medical Centre, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| |
Collapse
|
3
|
Jiang J, Shao X, Liu W, Wang M, Li Q, Wang M, Xiao Y, Li K, Liang H, Wang N, Xu X, Wu Y, Gao X, Xie Q, Xiang X, Liu W, Wu W, Yang L, Gu ZZ, Chen J, Lei M. The mechano-chemical circuit in fibroblasts and dendritic cells drives basal cell proliferation in psoriasis. Cell Rep 2024; 43:114513. [PMID: 39003736 DOI: 10.1016/j.celrep.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Saha R, Singh VP, Samuel SR, Vishak Acharya K, Acharya PR, Vijaya Kumar K. Effect of Home-Based Pulmonary Rehabilitation on Pulmonary Fibrosis. Multidiscip Respir Med 2024; 19:950. [PMID: 38836339 PMCID: PMC11186438 DOI: 10.5826/mrm.2024.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a chronic, progressive lung condition that involves lung tissue scarring and thickening. The effects of home-based pulmonary rehabilitation (PR) in post-covid pulmonary fibrosis (PCPF) and other forms of fibrosis together have not been evaluated. This study aims to evaluate the effectiveness of home-based pulmonary rehabilitation on pulmonary function, functional capacity, and health-related quality of life in people with pulmonary fibrosis (post-COVID pulmonary fibrosis, pulmonary fibrosis secondary to pulmonary tuberculosis (TB), pulmonary fibrosis secondary to interstitial lung disease (ILD), pulmonary fibrosis secondary to bronchiectasis). METHODS A single-group pretest-posttest experimental study was performed after recruiting 98 pulmonary fibrosis subjects from K.M.C hospitals. After being screened for the inclusion and exclusion criteria, 45 subjects were analyzed, and 6 subjects were lost to follow-up. A home-based pulmonary rehabilitation program was carried out for 8 weeks (warm-up, stretching exercises, aerobic exercise, strength training for upper limb and lower limb, breathing exercises mainly involved; others: energy saving techniques, controlled coughing techniques, dyspnea relieving positions). The program was supervised via weekly phone calls. Pulmonary function (Pulmonary function test), exercise capacity (6-minute walk test), dyspnea (modified Borg scale), and health-related quality of life (SF-36) were evaluated before and after the intervention. During the enrollment and after the 6-minute walk test, saturation of peripheral oxygen (SPO2) level was also evaluated pre-intervention and after the 8-weeks program. RESULTS Pulmonary function [FVC(L) t = -12.52, p<0.05; FEV1(L) t = -2.56, p<0.05; FEV1/FVC t = 7.98, p<0.05 and DLCO (ml/min/mmHg) t = -5.13, p<0.05], 6MWD [MD 88.66; p<0.05] and HRQOL measured by SF-36 scores (p<0.05) were improved significantly. Both the baseline SPO2 level before the 6MWT [MD 1.07, p<0.05] and the SPO2 level after the 6MWT [MD 1.16, p<0.05] showed a significant improvement. The rating of perceived exertion(dyspnea) [MD 1.30, p<0.05] was reduced significantly after the 8-week program. CONCLUSION Our study shows that home-based pulmonary rehabilitation is an effective option for improving lung function and physical functional capacity by reducing dyspnea perception and improving the saturation of peripheral oxygen (SPO2) level, and enhancing the quality of life in people with pulmonary fibrosis.
Collapse
Affiliation(s)
- Rashmita Saha
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India
| | - Vijay Pratap Singh
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India
| | - Stephen Rajan Samuel
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India
| | - K Vishak Acharya
- Department of Pulmonary Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, India
| | - Preetam Rajgopal Acharya
- Department of Pulmonary Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, India
| | - K. Vijaya Kumar
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India
| |
Collapse
|
5
|
Stróż S, Kosiorek P, Stasiak-Barmuta A. The COVID-19 inflammation and high mortality mechanism trigger. Immunogenetics 2024; 76:15-25. [PMID: 38063879 DOI: 10.1007/s00251-023-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lasted from March 2020 to May 2023, infecting over 689 million and causing 6.9 million deaths globally. SARS-CoV-2 enters human cells via the spike protein binding to ACE2 receptors, leading to viral replication and an exaggerated immune response characterized by a "cytokine storm." This review analyzes the COVID-19 pathogenesis, strains, risk factors for severe disease, and vaccine types and effectiveness. A systematic literature search for 2020-2023 was conducted. Results show the cytokine storm underlies COVID-19 pathogenesis, causing multiorgan damage. Key viral strains include Alpha, Beta, Gamma, Delta, and Omicron, differing in transmissibility, disease severity, and vaccine escape. Risk factors for severe COVID-19 include older age, obesity, and comorbidities. mRNA, viral vector, and inactivated vaccines effectively prevent hospitalization and death, although new variants exhibit some vaccine escape. Ongoing monitoring of emerging strains and vaccine effectiveness is warranted. This review provides updated information on COVID-19 pathogenesis, viral variants, risk factors, and vaccines to inform public health strategies for containment and treatment.
Collapse
Affiliation(s)
- Samuel Stróż
- Department of Clinical Immunology, Medical University of Bialystok, 15-089, 1 Jana Kilińskiego Str., Białystok, Poland.
| | - Piotr Kosiorek
- Department of Clinical Immunology, Medical University of Bialystok, 15-089, 1 Jana Kilińskiego Str., Białystok, Poland
- Department of Emergency, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027, 12 Ogrodowa Str., Białystok, Poland
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, 15-089, 1 Jana Kilińskiego Str., Białystok, Poland
| |
Collapse
|
6
|
Rasool G, Khan WA, Khan AM, Riaz M, Abbas M, Rehman AU, Irshad S, Ahmad S. COVID-19: A threat to the respiratory system. Int J Immunopathol Pharmacol 2024; 38:3946320241310307. [PMID: 39716038 DOI: 10.1177/03946320241310307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes acute coronavirus disease-19 (COVID-19) that has emerged on a pandemic level. Coronaviruses are well-known to have a negative impact on the lungs and cardiovascular system. SARS-CoV-2 induces a cytokine storm that primarily targets the lungs, causing widespread clinical disorders, including COVID-19. Although, SARS-CoV-2 positive individuals often show no or mild upper respiratory tract symptoms, severe cases can progress to acute respiratory distress syndrome (ARDS). Novel CoV-2 infection in 2019 resulted in viral pneumonia as well as other complications and extrapulmonary manifestation. ARDS is also linked to a higher risk of death. Now, it is essential to develop our perception of the long term sequelae coronavirus infection for the identification of COVID-19 survivors who are at higher risk of developing the chronic lung fibrosis. This review study was planned to provide an overview of the effects of SARS-CoV-2 infection on various parts of the respiratory system such as airways, pulmonary vascular, lung parenchymal and respiratory neuromuscular system as well as the potential mechanism of the ARDS related respiratory complications including the lung fibrosis in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Waqas Ahmed Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Arif Muhammad Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences (Section Biochemistry), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology (Section Pathology), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Saeed Ahmad
- Office of Research, Innovation and Commercialization (ORIC), University of Sargodha, Sargodha, Punjab, Pakistan
| |
Collapse
|
7
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
8
|
Mackinnon AC, Tonev D, Jacoby B, Pinzani M, Slack RJ. Galectin-3: therapeutic targeting in liver disease. Expert Opin Ther Targets 2023; 27:779-791. [PMID: 37705214 DOI: 10.1080/14728222.2023.2258280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The rising incidence of liver diseases is a worldwide healthcare concern. However, the therapeutic options to manage chronic inflammation and fibrosis, the processes at the basis of morbidity and mortality of liver diseases, are very limited. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. Several Gal-3 inhibitors are currently in clinical development. AREAS COVERED This review describes our current understanding of the role of Gal-3 in chronic liver diseases, with special emphasis on fibrosis. Also, we review therapeutic advances based on Gal-3 inhibition, describing drug properties and their current status in clinical research. EXPERT OPINION Currently, the known effects of Gal-3 point to a direct activation of the NLRP3 inflammasome leading to its activation in liver macrophages and activated macrophages play a key role in tissue fibrogenesis. However, more research is needed to elucidate the role of Gal-3 in the different activation pathways, dissecting the intracellular and extracellular mechanisms of Gal-3, and its role in pathogenesis. Gal-3 could be a target for early therapy of numerous hepatic diseases and, given the lack of therapeutic options for liver fibrosis, there is a strong pharmacologic potential for Gal-3-based therapies.
Collapse
Affiliation(s)
| | - Dimitar Tonev
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Brian Jacoby
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Robert J Slack
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| |
Collapse
|
9
|
Lepre CC, Russo M, Trotta MC, Petrillo F, D'Agostino FA, Gaudino G, D'Amico G, Campitiello MR, Crisci E, Nicoletti M, Gesualdo C, Simonelli F, D'Amico M, Hermenean A, Rossi S. Inhibition of Galectins and the P2X7 Purinergic Receptor as a Therapeutic Approach in the Neurovascular Inflammation of Diabetic Retinopathy. Int J Mol Sci 2023; 24:ijms24119721. [PMID: 37298672 DOI: 10.3390/ijms24119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular retinal complication of diabetic patients, contributing to loss of vision. Recently, retinal neuroinflammation and neurodegeneration have emerged as key players in DR progression, and therefore, this review examines the neuroinflammatory molecular basis of DR. We focus on four important aspects of retinal neuroinflammation: (i) the exacerbation of endoplasmic reticulum (ER) stress; (ii) the activation of the NLRP3 inflammasome; (iii) the role of galectins; and (iv) the activation of purinergic 2X7 receptor (P2X7R). Moreover, this review proposes the selective inhibition of galectins and the P2X7R as a potential pharmacological approach to prevent the progression of DR.
Collapse
Affiliation(s)
- Caterina Claudia Lepre
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Marina Russo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesco Petrillo
- Ph.D. Course in Translational Medicine, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabiana Anna D'Agostino
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gennaro Gaudino
- School of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Erminia Crisci
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
10
|
Zheng Z, Peng F, Zhou Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:77-83. [PMID: 37388822 PMCID: PMC9988550 DOI: 10.1016/j.pccm.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2022] [Accepted: 12/04/2022] [Indexed: 07/01/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‑19), caused by a novel severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has caused an enormous impact on the global healthcare. SARS-CoV-2 infection primarily targets the respiratory system. Although most individuals testing positive for SARS-CoV-2 present mild or no upper respiratory tract symptoms, patients with severe COVID-19 can rapidly progress to acute respiratory distress syndrome (ARDS). ARDS-related pulmonary fibrosis is a recognized sequelae of COVID-19. Whether post-COVID-19 lung fibrosis is resolvable, persistent, or even becomes progressive as seen in human idiopathic pulmonary fibrosis (IPF) is currently not known and remains a matter of debate. With the emergence of effective vaccines and treatments against COVID-19, it is now important to build our understanding of the long-term sequela of SARS-CoV-2 infection, to identify COVID-19 survivors who are at risk of developing chronic pulmonary fibrosis, and to develop effective anti-fibrotic therapies. The current review aims to summarize the pathogenesis of COVID-19 in the respiratory system and highlights ARDS-related lung fibrosis in severe COVID-19 and the potential mechanisms. It envisions the long-term fibrotic lung complication in COVID-19 survivors, in particular in the aged population. The early identification of patients at risk of developing chronic lung fibrosis and the development of anti-fibrotic therapies are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fei Peng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
12
|
Ofori M, Danquah CA, Asante J, Ativui S, Doe P, Abdul-Nasir Taribabu A, Nugbemado IN, Mensah AN. Betulin and Crinum asiaticum L. bulbs extract attenuate pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines in bleomycin-induced fibrosis mice model. Heliyon 2023; 9:e16914. [PMID: 37346329 PMCID: PMC10279834 DOI: 10.1016/j.heliyon.2023.e16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Background Pulmonary fibrosis (PF) is a lung disease characterized by scaring of lung tissue that impairs lung functions. The estimated survival time of patients with pulmonary fibrosis is 3-5 years. Bleomycin (BLM) is used clinically in the treatment of Hodgkin lymphoma and testicular germ-cell tumors. Bleomycin's mechanism of action is the inhibition of DNA and protein synthesis. This happens when leukocytes induce the release of cytokines and chemokines which increase the pro-fibrotic and pro-inflammatory cytokines such as IL-6, TNF-alpha, IL-13, IL-1β and transforming growth factor-beta 1 (TGF-β). Crinum asiaticum L. bulbs (CAE) are widely found in parts of Africa, Asia and Indian Ocean Island. It is also prevalent in southern part of Ghana and traditionally used by the indigenes to treat upper respiratory tract infections, and for wound healing. Betulin (BET) is found in the bulbs of Crinum asiaticum L. but widely isolated from the external bark of birches and sycamore trees. Betulin as a lupine type triterpenes has been researched for their pharmacological and biological activities including anticancer, anti-inflammatory, antimicrobial activities and anti-liver fibrosis effects.Aim of the study: The aim was to study the anti-pulmonary fibrosis effect of Crinum asiaticum L. bulbs extract and betulin in bleomycin-induced pulmonary fibrosis in mice. Materials and method There was a single oropharyngeal administration of bleomycin (80 mg/kg) in mice followed by the treatment of CAE and BET after 48 h of exposure to BLM. Results There was increased survival rate in CAE and BET treatment groups compared to the BLM induced group. There was a marked decreased in the levels of hydroxyproline, collagen I and III in the CAE and BET treatment groups compared to BLM-treated group. The treatment groups of CAE and BET significantly down regulated the levels of pro-fibrotic and pro-inflammatory cytokines concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increased in the BLM treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM induced pulmonary fibrosis in mice, the study showed improved lung functions with wide focal area of viable alveolar spaces and few collagen fibers deposition on lungs of treatment groups. Conclusion CAE and BET attenuated pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines as well as improving lung function. This could be a lead in drug discovery where compounds with anti-fibrotic effects could be developed for the treatment of lung injury.
Collapse
Affiliation(s)
- Michael Ofori
- Department of Pharmaceutical Science, Dr Hilla Limann Technical University, Wa, Ghana
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Joshua Asante
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
- Department of Medical Laboratory, Diamed Diagnostic Center, Kumasi, Ghana
| | - Selase Ativui
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | - Peace Doe
- Department of Pharmaceutical Science, School of Pharmacy, Central University, Accra, Ghana
| | | | | | - Adwoa Nkrumah Mensah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
13
|
Plasma N-Cleaved Galectin-9 Is a Surrogate Marker for Determining the Severity of COVID-19 and Monitoring the Therapeutic Effects of Tocilizumab. Int J Mol Sci 2023; 24:ijms24043591. [PMID: 36835000 PMCID: PMC9964849 DOI: 10.3390/ijms24043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Galectin-9 (Gal-9) is known to contribute to antiviral responses in coronavirus disease 2019 (COVID-19). Increased circulating Gal-9 in COVID-19 is associated with COVID-19 severity. In a while, the linker-peptide of Gal-9 is susceptible to proteolysis that can cause the change or loss of Gal-9 activity. Here, we measured plasma levels of N-cleaved-Gal9, which is Gal9 carbohydrate-recognition domain at the N-terminus (NCRD) with attached truncated linker peptide that differs in length depending on the type of proteases, in COVID-19. We also investigated the time course of plasma N-cleaved-Gal9 levels in severe COVID-19 treated with tocilizumab (TCZ). As a result, we observed an increase in plasma N-cleaved-Gal9 levels in COVID-19 and its higher levels in COVID-19 with pneumonia compared to the mild cases (healthy: 326.1 pg/mL, mild: 698.0 pg/mL, and with pneumonia: 1570 pg/mL). N-cleaved-Gal9 levels were associated with lymphocyte counts, C-reactive protein (CRP), soluble interleukin-2 receptor (sIL-2R), D-dimer, and ferritin levels, and ratio of percutaneous oxygen saturation to fraction of inspiratory oxygen (S/F ratio) in COVID-19 with pneumonia and discriminated different severity groups with high accuracy (area under the curve (AUC): 0.9076). Both N-cleaved-Gal9 and sIL-2R levels were associated with plasma matrix metalloprotease (MMP)-9 levels in COVID-19 with pneumonia. Furthermore, a decrease in N-cleaved-Gal9 levels was associated with a decrease of sIL-2R levels during TCZ treatment. N-cleaved-Gal9 levels showed a moderate accuracy (AUC: 0.8438) for discriminating the period before TCZ from the recovery phase. These data illustrate that plasma N-cleaved-Gal9 is a potential surrogate marker for assessing COVID-19 severity and the therapeutic effects of TCZ.
Collapse
|
14
|
Rizzi M, Tonello S, D’Onghia D, Sainaghi PP. Gas6/TAM Axis Involvement in Modulating Inflammation and Fibrosis in COVID-19 Patients. Int J Mol Sci 2023; 24:ijms24020951. [PMID: 36674471 PMCID: PMC9861142 DOI: 10.3390/ijms24020951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Gas6 (growth arrest-specific gene 6) is a widely expressed vitamin K-dependent protein that is involved in many biological processes such as homeostatic regulation, inflammation and repair/fibrotic processes. It is known that it is the main ligand of TAMs, a tyrosine kinase receptor family of three members, namely MerTK, Tyro-3 and Axl, for which it displays the highest affinity. Gas6/TAM axis activation is known to be involved in modulating inflammatory responses as well as fibrotic evolution in many different pathological conditions. Due to the rapidly evolving COVID-19 pandemic, this review will focus on Gas6/TAM axis activation in SARS-CoV-2 infection, where de-regulated inflammatory responses and fibrosis represent a relevant feature of severe disease manifestation. Furthermore, this review will highlight the most recent scientific evidence supporting an unsuspected role of Axl as a SARS-CoV-2 infection driver, and the potential therapeutic advantages of the use of existing Axl inhibitors in COVID-19 management. From a physiological point of view, the Gas6/TAM axis plays a dual role, fostering the tissue repair processes or leading to organ damage and loss of function, depending on the prevalence of its anti-inflammatory or profibrotic properties. This review makes a strong case for further research focusing on the Gas6/TAM axis as a pharmacological target to manage different disease conditions, such as chronic fibrosis or COVID-19.
Collapse
|
15
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Background Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|