1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Li S, Mu R, Guo X. Defensins regulate cell cycle: Insights of defensins on cellular proliferation and division. Life Sci 2024; 349:122740. [PMID: 38777302 DOI: 10.1016/j.lfs.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Defensins are a class of small antimicrobial peptides that play a crucial role against pathogens. However, recent research has highlighted defensins exhibit the ability to influence cell cycle checkpoints, promoting or inhibiting specific phases such as G1 arrest or S/M transition. By regulating the cell cycle, defensins impact the proliferation of normal and cancerous cells, with implications for cancer development and progression. Dysregulation of defensin expression can disrupt the delicate balance of cell cycle regulation, leading to uncontrolled cell growth and an increased risk of tumor formation. Defensins contribute to the resolution of inflammation, stimulate angiogenesis, and enhance the migration and proliferation of cells involved in tissue repair. Furthermore, The ability of defensins to respond to microenvironmental changes further demonstrates the significance of these peptides in host defense mechanisms and immune function. By adjusting their expression, defensins continue to combat pathogens effectively and maintain homeostasis within the body. This review highlights the multifaceted role of defensins in regulating the cell cycle and their broader implications in cancer progression, tissue repair, and microenvironmental response.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Rongrong Mu
- Affiliated Hospital of Sichuan Nursing Vocational College, The Third People's Hospital of Sichuan Province, China
| | - Xueqin Guo
- Department of Pathology, Gaomi City People's Hospital, Gaomi 261500, China
| |
Collapse
|
3
|
Wang Z, Chen X, Yan L, Wang W, Zheng P, Mohammadreza A, Liu Q. Antimicrobial peptides in bone regeneration: mechanism and potential. Expert Opin Biol Ther 2024; 24:285-304. [PMID: 38567503 DOI: 10.1080/14712598.2024.2337239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are small-molecule peptides with a unique antimicrobial mechanism. Other notable biological activities of AMPs, including anti-inflammatory, angiogenesis, and bone formation effects, have recently received widespread attention. These remarkable bioactivities, combined with the unique antimicrobial mechanism of action of AMPs, have led to their increasingly important role in bone regeneration. AREAS COVERED In this review, on the one hand, we aimed to summarize information about the AMPs that are currently used for bone regeneration by reviewing published literature in the PubMed database. On the other hand, we also highlight some AMPs with potential roles in bone regeneration and their possible mechanisms of action. EXPERT OPINION The translation of AMPs to the clinic still faces many problems, but their unique antimicrobial mechanisms and other conspicuous biological activities suggest great potential. An in-depth understanding of the structure and mechanism of action of AMPs will help us to subsequently combine AMPs with different carrier systems and perform structural modifications to reduce toxicity and achieve stable release, which may be a key strategy for facilitating the translation of AMPs to the clinic.
Collapse
Affiliation(s)
- ZhiCheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoMan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - WenJie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - PeiJia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Atashbahar Mohammadreza
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of International Education, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Santacroce L, Magrone T. Molluscum Contagiosum Virus: Biology and Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:151-170. [PMID: 38801577 DOI: 10.1007/978-3-031-57165-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molluscum contagiosum virus is a poxvirus belonging to the Poxviridae family, which includes Orthopoxvirus, Parapoxvirus, Yantapoxvirus, Molluscipoxvirus, Smallpox virus, Cowpox virus and Monkeypox virus. MCV belongs to the genus Molluscipoxvirus and has a tropism for skin tissue. MCV infects keratinocytes and, after an incubation period of 2 weeks to 6 weeks, causes a breakdown of the skin barrier with the development of papules of variable size depending on the proper functioning of the immune response (both adaptive and acquired). MCV only infects humans and does not cause viraemia. MCV encodes for several inhibitory proteins responsible to circumvent the immune response through different signalling pathways. Individuals who can be infected with MCV are children, immunocompromised individuals such as organ transplant recipients and Human Immunodeficiency Virus (HIV)-infected individuals. Current treatments to manage MCV-induced lesions are different and include the use of immunomodulators, which, however, do not provide an effective response.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy.
| | - Thea Magrone
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Ozola L, Pilmane M. Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. J Pers Med 2023; 14:27. [PMID: 38248728 PMCID: PMC10817640 DOI: 10.3390/jpm14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most frequent congenital orofacial defects is the cleft lip and palate. Local tissue defense factors are known to be important in immune response and inflammatory and healing processes in the cleft tissue; however, they have only been researched in older children during mixed dentition. Thus, the aim of this study is to assess the distribution of LL-37, CD-163, IL-10, HBD-2, HBD-3, and HBD-4 in children before and during milk dentition. The unique and rare material of palate tissue was obtained from 13 patients during veloplastic surgeries during the time span of 20 years. Immunohistochemistry, light microscopy, semi-quantitative evaluation, and non-parametric statistical analysis were used. A significant decrease in HBD-3 and HBD-4 in the connective tissue was found, as well as several mutual statistically significant and strong correlations between HBD-2, HBD-3, HBD-4, and LL-37. Deficiency of HBD-3 and HBD-4 suggests promotion of chronic inflammation. The scarcity of HBD-4 could be connected to the different signaling pathways of dental pulp cells. Mutual correlations imply changes in the epithelial barrier, amplified healing efficiency, and increased antibacterial line of defense. Deprivation of changes in IL-10 quantity points to possible suppression of the factor. The presence of similar CD-163 immunoreactive substances produced by M2 macrophages was also observed.
Collapse
Affiliation(s)
- Laura Ozola
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
6
|
Filipe Rosa L, Rings A, Stolzer I, Koeninger L, Wehkamp J, Beisner J, Günther C, Nordkild P, Jensen BAH, Bischoff SC. Human α-Defensin 5 1-9 and Human β-Defensin 2 Improve Metabolic Parameters and Gut Barrier Function in Mice Fed a Western-Style Diet. Int J Mol Sci 2023; 24:13878. [PMID: 37762180 PMCID: PMC10531064 DOI: 10.3390/ijms241813878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity and metabolic comorbidities are associated with gut permeability. While high-fructose and Western-style diet (WSD) disrupt intestinal barrier function, oral administration of human α-defensin 5 (HD5) and β-defensin 2 (hBD2) is believed to improve intestinal integrity and metabolic disorders. Eighty-four male C57BL/6J mice were fed a WSD or a control diet (CD) ± fructose (F) for 18 weeks. In week 13, mice were randomly divided into three intervention groups, receiving defensin fragment HD51-9, full-length hBD2, or bovine serum albumin (BSA)-control for six weeks. Subsequently, parameters of hepatic steatosis, glucose metabolism, and gut barrier function were assessed. WSDF increased body weight and hepatic steatosis (p < 0.01) compared to CD-fed mice, whereas peptide intervention decreased liver fat (p < 0.05) and number of hepatic lipid droplets (p < 0.01) compared to BSA-control. In addition, both peptides attenuated glucose intolerance by reducing blood glucose curves in WSDF-fed mice. Evaluation of gut barrier function revealed that HD51-9 and hBD2 improve intestinal integrity by upregulating tight junction and mucin expression. Moreover, peptide treatment restored ileal host defense peptides (HDP) expression, likely by modulating the Wnt, Myd88, p38, and Jak/STAT pathways. These findings strongly suggest that α- and β-defensin treatment improve hepatic steatosis, glucose metabolism, and gut barrier function.
Collapse
Affiliation(s)
- Louisa Filipe Rosa
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Andreas Rings
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Louis Koeninger
- Department of Internal Medicine I, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Julia Beisner
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Benjamin A. H. Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| |
Collapse
|
7
|
Wang J, Duan Z, Chen X, Li M. The immune function of dermal fibroblasts in skin defence against pathogens. Exp Dermatol 2023; 32:1326-1333. [PMID: 37387265 DOI: 10.1111/exd.14858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Dermal fibroblasts are the main resident cells of the dermis. They have several significant functions related to wound healing, extracellular matrix production and hair cycling. Dermal fibroblasts can also act as sentinels in defence against infection. They express pattern recognition receptors such as toll-like receptors to sense pathogen components, followed by the synthesis of pro-inflammatory cytokines (including IL-6, IFN-β and TNF-α), chemokines (such as IL-8 and CXCL1) and antimicrobial peptides. Dermal fibroblasts also secrete other molecules-like growth factors and matrix metalloproteinases to benefit tissue repair from infection. Crosstalk between dermal fibroblasts and immune cells may amplify the immune response against infection. Moreover, the transition of a certain adipogenic fibroblasts to adipocytes protects skin from bacterial infection. Together, we discuss the role of dermal fibroblasts in the war against pathogens in this review. Dermal fibroblasts have important immune functions in anti-infection immunity, which should not be overlooked.
Collapse
Affiliation(s)
- Jianing Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Deņisova A, Pilmane M, Kažoka D. Antimicrobial Peptides and Interleukins in Cleft Soft Palate. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1162. [PMID: 37508659 PMCID: PMC10378461 DOI: 10.3390/children10071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Cleft palate is one of the most common and well-studied congenital anomalies; however, the role of protective tissue factors in its pathophysiology is still debated. The aim of our study was to evaluate interleukin and antimicrobial peptide appearance and distribution in cleft palate. Eight soft palate samples were obtained during veloplasty procedures. Immunohistochemical staining was applied to detect HBD-2-, HBD-3-, HBD-4-, LL-37-, IL-10-, and CD-163-positive cells via light microscopy. For statistical evaluation, the Mann-Whitney U test and Spearman's rank correlation coefficient were used. A significant difference between study groups was observed for HBD-2 and IL-10 in epithelial and connective tissue as well as HBD-4 in connective tissue. The number of HBD-3-positive cells was moderate in the patients, and few were observed in the controls. The number of LL-37-positive cells varied from a moderate amount to a numerous amount in both study groups, whilst CD-163 marked a moderate number of positive cells in patients, and a few-to-moderate amount was observed in the controls. Numerous correlations between studied factors were revealed in cleft tissues. The increase in antimicrobial peptides HBD-2 and HBD-4 and anti-inflammatory cytokine IL-10 suggested a wide compensatory elevation of the local immune system against cleft-raised tissue changes. The correlations between the studied factors (HBD-2, HBD-3, HBD-4, LL-37, and IL-10) proved the synergistic involvement of common local defense factors in postnatal cleft palate morphopathogenesis.
Collapse
Affiliation(s)
- Arina Deņisova
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Dzintra Kažoka
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
9
|
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Sun S, Wu D, Peng C. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces 2023; 225:113255. [PMID: 36924650 DOI: 10.1016/j.colsurfb.2023.113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and β-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.
Collapse
Affiliation(s)
- Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
10
|
Tan ZX, Tao R, Li SC, Shen BZ, Meng LX, Zhu ZY. Role of defensins in diabetic wound healing. World J Diabetes 2022; 13:962-971. [PMID: 36437862 PMCID: PMC9693740 DOI: 10.4239/wjd.v13.i11.962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The adverse consequences resulting from diabetes are often presented as severe complications. Diabetic wounds are one of the most commonly occurring complications in diabetes, and the control and treatment of this is costly. Due to a series of pathophysiological mechanisms, diabetic wounds remain in the inflammatory phase for a prolonged period of time, and face difficulty in entering the proliferative phase, thus leading to chronic non-healing wounds. The current consensus on the treatment of diabetic wounds is through multidisciplinary comprehensive management, however, standard wound treatment methods are still limited and therefore, more effective methods are required. In recent years, defensins have been found to play diverse roles in a variety of diseases; however, the molecular mechanisms underlying these activities are still largely unknown. Defensins can be constitutively or inductively produced in the skin, therefore, their local distribution is affected by the microenvironment of these diabetic wounds. Current evidence suggests that defensins are involved in the diabetic wound pathogenesis, and can potentially promote the early completion of each stage, thus making research on defensins a promising area for developing novel treatments for diabetic wounds. In this review, we describe the complex function of human defensins in the development of diabetic wounds, and suggest potential thera-peutic benefits.
Collapse
Affiliation(s)
- Zhi-Xiang Tan
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Si-Cheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bing-Zheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lan-Xia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan-Yong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
11
|
Felgueiras HP. Frontiers in Antimicrobial Biomaterials. Int J Mol Sci 2022; 23:9377. [PMID: 36012640 PMCID: PMC9409240 DOI: 10.3390/ijms23169377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Biomaterials can be used as implantable devices or drug delivery platforms, which have significant impacts on the patient's quality of life [...].
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|