1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
2
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
3
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2024; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
4
|
Torsello M, Animini M, Gualandi C, Perut F, Pollicino A, Boi C, Focarete ML. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. MEMBRANES 2024; 14:206. [PMID: 39452818 PMCID: PMC11509411 DOI: 10.3390/membranes14100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before deacetylation to obtain regenerated cellulose (RC). Affinity membranes were obtained by functionalization, exploiting the hydroxyl groups on the cellulose backbone. 1,4-Butanediol-diglycidyl ether was used to introduce epoxy groups onto the membrane, which was further bioconjugated with the anti-CD63 antibody targeting the tetraspanin CD63 on the extracellular vesicle membrane surface. The highest ligand density was obtained with an anti-CD63 antibody concentration of 6.4 µg/mL when bioconjugation was performed in carbonate buffer. The resulting affinity membrane was tested for the adsorption of extracellular vesicles (EVs) from human platelet lysate, yielding a very promising binding capacity above 10 mg/mL and demonstrating the suitability of this approach.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Margherita Animini
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Chiara Gualandi
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, V.le A.Doria 6, 95125 Catania, Italy;
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
5
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
6
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
7
|
Yang Q, Zhong R, Chang W, Chen K, Wang M, Yuan S, Liang Z, Wang W, Wang C, Tong G, Zhang T, Sun Y. WormSpace μ-TAS enabling automated on-chip multi-strain culturing and multi-function imaging of Caenorhabditis elegans at the single-worm level on the China Space Station. LAB ON A CHIP 2024; 24:3388-3402. [PMID: 38818738 DOI: 10.1039/d4lc00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace μ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace μ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace μ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Runtao Zhong
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wenbo Chang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Kexin Chen
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Mengyu Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Shuqi Yuan
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Zheng Liang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wei Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Chao Wang
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - Guanghui Tong
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Tao Zhang
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| |
Collapse
|
8
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Chen M, Pei Z, Wang Y, Song F, Zhong J, Wang C, Ma Y. Small extracellular vesicles' enrichment from biological fluids using an acoustic trap. Analyst 2024; 149:3169-3177. [PMID: 38639189 DOI: 10.1039/d4an00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 μL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.
Collapse
Affiliation(s)
- Mengli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Zhiguo Pei
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
10
|
Zhang C. Exosomes Derived from Mesenchymal Stem Cells: Therapeutic Opportunities for Spinal Cord Injury. Bull Exp Biol Med 2024; 176:716-721. [PMID: 38888648 DOI: 10.1007/s10517-024-06095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 06/20/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological condition comprising primary and secondary injury and causing severe neurological impairments. The effect of the conventional treatment is limited, including supportive therapy and emergency surgery. Exosomes derived from mesenchymal stem cells (MSCs-Exos) were previously reported to exert its potential therapeutic effects on SCI. Compared with mesenchymal stem cells (MSCs) transplantation for SCI, MSC-Exos showed several superiorities. In the present review, we summarized the revealed data of mechanisms underlying MSC-Exos repairing of SCI and discussed the issues of MSC-Exos use. Thus, in this review we summarized the latest studies on MSCs-Exos in the therapy of SCI and discussed whether MSCs-Exos can be applied to SCI and the prospects of transformation application.
Collapse
Affiliation(s)
- C Zhang
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
11
|
Pang JL, Shao H, Xu XG, Lin ZW, Chen XY, Chen JY, Mou XZ, Hu PY. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives. Front Bioeng Biotechnol 2024; 12:1363742. [PMID: 38558788 PMCID: PMC10978787 DOI: 10.3389/fbioe.2024.1363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
Collapse
Affiliation(s)
- Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| | - Hong Shao
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao-Gang Xu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhi-Wei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jin-Yang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
12
|
Wu G, Lu F, Zhao J, Feng X, Ren Y, Hu S, Yu W, Dong B, Hu L. Investigation of rare earth-based magnetic nanocomposites for specific enrichment of exosomes from human plasma. J Chromatogr A 2024; 1714:464543. [PMID: 38065027 DOI: 10.1016/j.chroma.2023.464543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Exosomes, also known as small extracellular vesicles, are widely present in a variety of body fluids (e.g., blood, urine, and saliva). Exosomes are becoming an alternative promising source of diagnostic markers for disease rich in cargo of metabolites, proteins, and nucleic acids. However, due to the low abundance and structure similarity with protein complex, the efficient isolation of exosomes is one of the most important issues for biomedical applications. With a higher order of f-orbitals in rare earth element, it will have strong adsorption toward the phosphate group on the surface of the phospholipid bilayer of exosomes. In this study, we systematically investigated the ability of various rare earths interacting with phosphate-containing molecules and plasma exosomes. One of the best binding europium was selected and used to synthesize core-shell magnetic nanomaterials (Fe3O4@SiO2@Eu2O3) for the enrichment of exosomes from human plasma. The developed nanomaterials exhibited higher enrichment capacity, less time consumption and more convenient handling compared to commonly used ultracentrifugation method. The nanomaterials were applied to separate exosomes from the plasma of patients with hepatocellular carcinoma and healthy controls for metabolomics study with high-resolution mass spectrometry, where 70 differentially expressed metabolites were identified, involving amino acid and lipid metabolic pathway. We anticipated the rare earth-based materials to be an alternative approach on exosome isolation for disease diagnosis or postoperative clinical monitoring.
Collapse
Affiliation(s)
- Guangyao Wu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Lu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songtao Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
14
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
15
|
Bajo-Santos C, Priedols M, Kaukis P, Paidere G, Gerulis-Bergmanis R, Mozolevskis G, Abols A, Rimsa R. Extracellular Vesicles Isolation from Large Volume Samples Using a Polydimethylsiloxane-Free Microfluidic Device. Int J Mol Sci 2023; 24:7971. [PMID: 37175677 PMCID: PMC10178709 DOI: 10.3390/ijms24097971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular vesicles (EV) have many attributes important for biomedicine; however, current EV isolation methods require long multi-step protocols that generally involve bulky equipment that cannot be easily translated to clinics. Our aim was to design a new cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) asymmetric flow field fractionation microfluidic device that could isolate EV from high-volume samples in a simple and efficient manner. We tested the device with large volumes of urine and conditioned cell media samples, and compared it with the two most commonly used EV isolation methods. Our device was able to separate particles by size and buoyancy, and the attained size distribution was significantly smaller than other methods. This would allow for targeting EV size fractions of interest in the future. However, the results were sample dependent, with some samples showing significant improvement over the current EV separation methods. We present a novel design for a COC-OSTE microfluidic device, based on bifurcating asymmetric flow field-flow fractionation (A4F) technology, which is able to isolate EV from large volume samples in a simple, continuous-flow manner. Its potential to be mass-manufactured increases the chances of implementing EV isolation in a clinical or industry-friendly setting, which requires high repeatability and throughput.
Collapse
Affiliation(s)
- Cristina Bajo-Santos
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Miks Priedols
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Pauls Kaukis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Gunita Paidere
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | | | - Gatis Mozolevskis
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | - Arturs Abols
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia
| | - Roberts Rimsa
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| |
Collapse
|
16
|
Shaabani N, Meira SR, Marcet-Palacios M, Kulka M. Multiparametric Biosensors for Characterizing Extracellular Vesicle Subpopulations. ACS Pharmacol Transl Sci 2023; 6:387-398. [PMID: 36926451 PMCID: PMC10012251 DOI: 10.1021/acsptsci.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are an important intercellular communication conduit for cells that have applications in precision therapy and targeted drug delivery. Small EVs, or exosomes, are a 30-150 nm phospholipid-encased subpopulation of EVs that are particularly difficult to characterize due to their small size and because they are difficult to isolate using conventional methods. In this review, we discuss some recent advances in exosome isolation, purification, and sensing platforms using microfluidics, acoustics, and size exclusion chromatography. We discuss some of the challenges and unanswered questions with respect to understanding exosome size heterogeneity and how modern biosensor technology can be applied to exosome isolation. In addition, we discuss how some advancements in sensing platforms such as colorimetric, fluorescent, electronic, surface plasmon resonance (SPR), and Raman spectroscopy may be applied to exosome detection in multiparametric systems. The application of cryogenic electron tomography and microscopy to understanding exosome ultrastructure will become vital as this field progresses. In conclusion, we speculate on some future needs in the exosome research field and how these technologies could be applied.
Collapse
Affiliation(s)
- Narges Shaabani
- Nanotechnology
Research Centre, National Research Council
Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Sabrina Rodrigues Meira
- Nanotechnology
Research Centre, National Research Council
Canada, Edmonton, Alberta T6G 2M9, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Marianna Kulka
- Nanotechnology
Research Centre, National Research Council
Canada, Edmonton, Alberta T6G 2M9, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
17
|
Bifurcated Asymmetric Field Flow Fractionation of Nanoparticles in PDMS-Free Microfluidic Devices for Applications in Label-Free Extracellular Vesicle Separation. Polymers (Basel) 2023; 15:polym15040789. [PMID: 36850073 PMCID: PMC9961489 DOI: 10.3390/polym15040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles are small membrane-bound structures that are released by cells and play important roles in intercellular communication garnering significant attention in scientific society recently due to their potential as diagnostic and therapeutic tools. However, separating EVs from large-volume samples remains a challenge due to their small size and low concentration. In this manuscript, we presented a novel method for separating polystyrene beads as control and extracellular vesicles from large sample volumes using bifurcated asymmetric field flow fractionation in PDMS-free microfluidic devices. Separation characteristics were evaluated using the control system of polystyrene bead mix, which offers up to 3.7X enrichment of EV-sized beads. Furthermore, in the EV-sample from bioreactor culture media, we observed a notable population distribution shift of extracellular vesicles. Herein presented novel PDMS-free microfluidic device fabrication protocol resulted in devices with reduced EV-loss compared to size-exclusion columns. This method represented an improvement over the current state of the art in terms of EV separation from large sample volumes through the use of novel field flow fractionation design.
Collapse
|