1
|
Bai X, Liu Y, Liu J, Guo K, Guan H. ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis. Int Immunopharmacol 2024; 146:113914. [PMID: 39732105 DOI: 10.1016/j.intimp.2024.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation. The use of ADSCs-exo in CLP mice and in LPS-induced macrophages relieved oxidative stress, cellular damage, and acute lung injury. During this process, ADSCs-exo increased the nuclear translocation of Nrf2, significantly upregulating the activation of the antioxidant pathway Nrf2/HO-1. Concurrently, they enhanced the expression of SIRT1 in macrophages. Further SIRT1 interference experiments demonstrated that ADSCs-exo mitigated macrophage inflammatory responses and LPS-induced ferroptosis by upregulating SIRT1. In the LPS-induced macrophage model, after SIRT1 was interfered with, ADSCs-exo failed to upregulate the Nrf2/HO-1 signaling pathway, leading to enhanced ferroptosis. Finally, in a CLP sepsis mouse model with myeloid-specific SIRT1 knockout, ADSCs-exo was observed to reduce lung tissue injury, oxidative stress damage, and ferroptosis. Still, these beneficial effects were reversed due to the myeloid-specific knockout of SIRT1, while co-administration of a ferroptosis inhibitor rescued this situation, alleviating lung injury and significantly reducing tissue levels of oxidative stress. In conclusion, this study elucidated a novel potential therapeutic mechanism wherein ADSCs-exo upregulates the levels of SIRT1 in macrophages through a non-delivery approach.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Bottari G, Ranieri VM, Ince C, Pesenti A, Aucella F, Scandroglio AM, Ronco C, Vincent JL. Use of extracorporeal blood purification therapies in sepsis: the current paradigm, available evidence, and future perspectives. Crit Care 2024; 28:432. [PMID: 39722012 DOI: 10.1186/s13054-024-05220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Sepsis is the result of a dysregulated immune response to infection and is associated with acute organ dysfunction. The syndrome's complexity is contingent upon the underlying pathology and individual patient characteristics, including their immune response. The involvement of multiple organs and physiological functions adds complexity, with "organ cross-talk" emerging as a pivotal pathophysiological and clinical aspect. This narrative review to evaluate the rationale and available clinical evidence supporting the use of extracorporeal blood purification therapies as adjunctive therapy in patients with sepsis and septic shock. MAIN BODY A search of the PubMed, Embase, Web of Science and Scopus databases for relevant literature from August 2002 to May 2024 has been conducted. The search was performed using the terms: 1) "blood purification" or "hemadsorption" or "plasma exchange" AND 2) "sepsis" or "septic shock". Therefore the authors have focused our discussion on several key areas such as conducting well-designed trials, developing more personalized protocols, ensuring optimal management and monitoring. CONCLUSIONS Given the heterogeneity of patients with sepsis, conducting traditional randomized clinical trials in this domain can be a daunting task. However, statistical techniques such as Bayesian methods, propensity score analysis, and emulated clinical trials using clinical databases hold promise for enhancing comparability between the study groups. Indeed, to comprehend the clinical efficacy of extracorporeal blood purification techniques in patients with sepsis, it is imperative to assemble homogeneous groups of patients receiving uniform treatments. Clinical strategies should be individualized, signaling the end of the "one size fits all" approach in sepsis therapy and the need for personalized treatments.
Collapse
Affiliation(s)
- Gabriella Bottari
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazzale Sant'Onofrio 65, Rome, Italy.
| | - Vito Marco Ranieri
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University Aldo Moro Bari, Bari, Italy
- Department of Anesthesia and Critical Care Medicine, Policlinico Bari, Bari, Italy
| | - Can Ince
- Laboratory of Translational Intensive Care, Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Antonio Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Filippo Aucella
- Nephrology and Dialysis Unit, Casa Solievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | - Claudio Ronco
- International Renal Research Institute Vicenza, IRRIV, Vicenza, Italy
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Aghayan AH, Mirazimi Y, Nasehi L, Atashi A. The toxic effects of neutrophil extracellular traps on mesenchymal stem cells. Mol Biol Rep 2024; 52:30. [PMID: 39614028 DOI: 10.1007/s11033-024-10134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Sepsis, a systemic inflammatory response syndrome resulting from an uncontrolled inflammatory reaction to infection, remains without a definitive cure despite therapeutic advancements. Mesenchymal stem cells (MSCs), renowned for their capacity to alleviate inflammation and modulate the immune system, have emerged as a potential treatment avenue for sepsis. In sepsis pathophysiology, hyperactivated neutrophils release extracellular neutrophil traps (NETs). NETs are essential for eradicating pathogens; however, excessive formation leads to tissue damage. Given the limited knowledge regarding the impact of NETs on MSCs used in sepsis therapy and the established interaction between MSCs and NETs, this study investigates the effects of NETs on MSCs in vitro. NETs were isolated from stimulated neutrophils, and MSCs were sourced from umbilical cord blood. After co-culturing MSCs with isolated NETs, MSCs' viability, migration, intracellular antioxidant capacity, and changes in gene expression were analyzed. Following exposure to NETs, MSCs exhibited obvious apoptosis and necrosis. NETs disrupt MSCs' mitochondrial activity. Also, NETs upregulate the pro-apoptotic gene BAX and downregulate the anti-apoptotic gene BCL2 in MSCs. Additionally, NETs reduce MSCs' intracellular antioxidant capacity. Furthermore, MSC migration is significantly impaired by NETs. This study collectively demonstrates that NETs have toxic and detrimental effects on MSCs. These effects on MSCs indicate a potential barrier to their functionality and therapeutic efficacy. Therefore, it appears that reducing the undesirable effects of NETs could serve as a novel target to enhance the therapeutic efficacy of MSCs in septic patients.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
4
|
Jiang Y, Song Y, Zeng Q, Jiang B. Mesenchymal Stem Cells and Their Extracellular Vesicles Are a Promising Alternative to Antibiotics for Treating Sepsis. Bioengineering (Basel) 2024; 11:1160. [PMID: 39593820 PMCID: PMC11591657 DOI: 10.3390/bioengineering11111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis is a life-threatening disease caused by the overwhelming response to pathogen infections. Currently, treatment options for sepsis are limited to broad-spectrum antibiotics and supportive care. However, the growing resistance of pathogens to common antibiotics complicates treatment efforts. Excessive immune response (i.e., cytokine storm) can persist even after the infection is cleared. This overactive inflammatory response can severely damage multiple organ systems. Given these challenges, managing the excessive immune response is critical in controlling sepsis progression. Therefore, Mesenchymal stem cells (MSCs), with their immunomodulatory and antibacterial properties, have emerged as a promising option for adjunctive therapy in treating sepsis. Moreover, MSCs exhibit a favorable safety profile, as they are eventually eliminated by the host's immune system within several months post-administration, resulting in minimal side effects and have not been linked to common antibiotic therapy drawbacks (i.e., antibiotic resistance). This review explores the potential of MSCs as a personalized therapy for sepsis treatment, clarifying their mechanisms of action and providing up-to-date technological advancements to enhance their protective efficacy for patients suffering from sepsis and its consequences.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Yunjuan Song
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Sun Y, Lu J, Wu J, Qi X, Huang Y, Lin K, Yang J, Wang H, Li J, Fang S, Yang A, Chen S, Chang W, Jin J, Xu Z, Wang S. Potential mechanism of CARD16 protein action and susceptibility to sepsis in the elderly infected population: Through transcriptome analysis of blood. Int J Biol Macromol 2024; 281:136578. [PMID: 39406325 DOI: 10.1016/j.ijbiomac.2024.136578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
As global aging accelerates, the super-elderly population is at higher risk of infectious diseases, especially sepsis, a condition that may be associated with declining immune system function and abnormal inflammatory responses. The aim of this study was to investigate the role of CARD16 protein in sepsis susceptibility in the elderly population and its potential mechanism, and to reveal the expression characteristics of CARD16-related genes through blood transcriptomic analysis. Transcriptome sequencing was conducted on peripheral blood samples obtained from patients suffering from senile sepsis, along with samples from a healthy elderly control group. To examine the differences in gene expression, bioinformatics techniques were employed to compare the expression levels of CARD16-related genes between the two groups. Additionally, a comprehensive analysis was performed on the downstream inflammatory pathways and cytokines that are regulated by CARD16.The findings from the transcriptome analysis indicated that the expression of CARD16 was markedly upregulated in the cohort of patients experiencing hypersenile sepsis. This upregulation was associated with an increase in a variety of pro-inflammatory factors. Further network analysis suggested that CARD16 may potentiate the inflammatory response by modulating the NF-κB signaling pathway, which could consequently heighten the patients' vulnerability to sepsis.In comparison to the healthy elderly control group, the levels of anti-inflammatory genes in the super-elderly cohort were found to be significantly diminished. This observation points to a notable imbalance in immune regulation, further emphasizing the altered immune response in individuals with senile sepsis.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China
| | - Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanfang Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jingnan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jinwei Li
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyu Fang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ali Yang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wenhong Chang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Zhongqing Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China.
| |
Collapse
|
6
|
Kaddoura R, Abdalbari K, Kadom M, Badla BA, Hijleh AA, Hanifa M, AlAshkar M, Asbaita M, Othman D, Faraji H, AlBakri O, Tahlak S, Hijleh AA, Kabbani R, Resen M, Abdalbari H, Du Plessis SS, Omolaoye TS. Post-Meningitic Syndrome: Pathophysiology and Consequences of Streptococcal Infections on the Central Nervous System. Int J Mol Sci 2024; 25:11053. [PMID: 39456835 PMCID: PMC11507220 DOI: 10.3390/ijms252011053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus species represent a significant global cause of meningitis, leading to brain damage through bacterial virulence factors and the host inflammatory response. Upon entering the central nervous system (CNS), excessive inflammation leads to various neurological and psychological complications. This review explores the pathophysiological mechanisms and associated outcomes of streptococcal meningitis, particularly its short- and long-term neurological sequelae. Neurological symptoms, such as cognitive impairment, motor deficits, and sensory loss, are shown to vary in severity, with children being particularly susceptible to lasting complications. Among survivors, hearing loss, cognitive decline, and cranial nerve palsies emerge as the most frequently reported complications. The findings highlight the need for timely intervention, including neurorehabilitation strategies that focus on optimizing recovery and mitigating long-term disabilities. Future recommendations emphasize improving early diagnosis, expanding vaccine access, and personalizing rehabilitation protocols to enhance patient outcomes. As a novel contribution, this review proposes the term "post-meningitic syndrome" to showcase the broad spectrum of CNS complications that persist following streptococcal meningitis, providing a framework for a future clinical and research focus.
Collapse
Affiliation(s)
- Rachid Kaddoura
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Karim Abdalbari
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mhmod Kadom
- Faculty of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - Beshr Abdulaziz Badla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Amin Abu Hijleh
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mohamed Hanifa
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Masa AlAshkar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mohamed Asbaita
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Deema Othman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Hanan Faraji
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Orjwan AlBakri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Sara Tahlak
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Amir Abu Hijleh
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Raneem Kabbani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Murtadha Resen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Helmi Abdalbari
- Faculty of Medicine, University of Nicosia, P.O. Box 24005, Nicosia 1700, Cyprus;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| |
Collapse
|
7
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
8
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
9
|
Gebeyehu GM, Rashidiani S, Farkas B, Szabadi A, Brandt B, Pap M, Rauch TA. Unveiling the Role of Exosomes in the Pathophysiology of Sepsis: Insights into Organ Dysfunction and Potential Biomarkers. Int J Mol Sci 2024; 25:4898. [PMID: 38732114 PMCID: PMC11084308 DOI: 10.3390/ijms25094898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.
Collapse
Affiliation(s)
- Gizaw Mamo Gebeyehu
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - András Szabadi
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Barbara Brandt
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Marianna Pap
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| |
Collapse
|
10
|
Pei F, Gu B, Miao SM, Guan XD, Wu JF. Clinical practice of sepsis-induced immunosuppression: Current immunotherapy and future options. Chin J Traumatol 2024; 27:63-70. [PMID: 38040590 DOI: 10.1016/j.cjtee.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a potentially fatal condition characterized by the failure of one or more organs due to a disordered host response to infection. The development of sepsis is closely linked to immune dysfunction. As a result, immunotherapy has gained traction as a promising approach to sepsis treatment, as it holds the potential to reverse immunosuppression and restore immune balance, thereby improving the prognosis of septic patients. However, due to the highly heterogeneous nature of sepsis, it is crucial to carefully select the appropriate patient population for immunotherapy. This review summarizes the current and evolved treatments for sepsis-induced immunosuppression to enhance clinicians' understanding and practical application of immunotherapy in the management of sepsis.
Collapse
Affiliation(s)
- Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Bin Gu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Shu-Min Miao
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Jian-Feng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China.
| |
Collapse
|
11
|
King N, Dhumal D, Lew SQ, Kuo SH, Galanakou C, Oh MW, Chong SY, Zhang N, Lee LTO, Hayouka Z, Peng L, Lau GW. Amphiphilic Dendrimer as Potent Antibacterial against Drug-Resistant Bacteria in Mouse Models of Human Infectious Diseases. ACS Infect Dis 2024; 10:453-466. [PMID: 38241613 DOI: 10.1021/acsinfecdis.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18-8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18-8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18-8A in mouse models of human infectious diseases. Remarkably, DDC18-8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18-8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18-8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.
Collapse
Affiliation(s)
- Noah King
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Dinesh Dhumal
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Christina Galanakou
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ling Peng
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
12
|
Chen Y, Yang L, Li X. Advances in Mesenchymal stem cells regulating macrophage polarization and treatment of sepsis-induced liver injury. Front Immunol 2023; 14:1238972. [PMID: 37954578 PMCID: PMC10634316 DOI: 10.3389/fimmu.2023.1238972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Sepsis is a syndrome of dysregulated host response caused by infection, which leads to life-threatening organ dysfunction. It is a familiar reason of death in critically ill patients. Liver injury frequently occurs in septic patients, yet the development of targeted and effective treatment strategies remains a pressing challenge. Macrophages are essential parts of immunity system. M1 macrophages drive inflammation, whereas M2 macrophages possess anti-inflammatory properties and contribute to tissue repair processes. Mesenchymal stem cells (MSCs), known for their remarkable attributes including homing capabilities, immunomodulation, anti-inflammatory effects, and tissue regeneration potential, hold promise in enhancing the prognosis of sepsis-induced liver injury by harmonizing the delicate balance of M1/M2 macrophage polarization. This review discusses the mechanisms by which MSCs regulate macrophage polarization, alongside the signaling pathways involved, providing an idea for innovative directions in the treatment of sepsis-induced liver injury.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Emergency Medicine, West China Second Hospital of Sichuan University, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Sichuan, China
| | - Lihong Yang
- Department of Emergency Medicine, West China Second Hospital of Sichuan University, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Sichuan, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second Hospital of Sichuan University, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Sichuan, China
| |
Collapse
|
13
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
15
|
Jain K, Mohan KV, Roy G, Sinha P, Jayaraman V, Kiran, Yadav AS, Phasalkar A, Deepanshu, Pokhrel A, Perumal N, Sinha N, Chaudhary K, Upadhyay P. Reconditioned monocytes are immunomodulatory and regulate inflammatory environment in sepsis. Sci Rep 2023; 13:14977. [PMID: 37696985 PMCID: PMC10495550 DOI: 10.1038/s41598-023-42237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Sepsis is caused by dysregulated immune response to severe infection and hyper inflammation plays a central role in worsening the disease. The immunomodulatory properties of mesenchymal stem cells (MSCs) have been evaluated as a therapeutic candidate for sepsis. Reconditioned monocytes (RM), generated from healthy human peripheral blood mononuclear cells (PBMCs) exhibit both macrophage and MSCs-like properties. RM were administered at different stages of sepsis in a mouse model. It reduced serum levels of IL6, MCP-1, IL-10, improved hypothermia, increased survival, and recovery from 0 to 66% when combined with antibiotics in the mouse model. The reduced human leucocyte antigen DR molecules expression on RM enables their co-culture with PBMCs of sepsis patients which resulted in reduced ROS production, and up-regulated TGF-β while down-regulating IL6, IL8, and IL-10 in-vitro. RM are potentially immunomodulatory, enhance survival in sepsis mouse model and modulate inflammatory behaviour of sepsis patient's PBMCs.
Collapse
Affiliation(s)
- Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - K Varsha Mohan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gargi Roy
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakriti Sinha
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vignesh Jayaraman
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kiran
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Ajit Singh Yadav
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Akshay Phasalkar
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Deepanshu
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Anupa Pokhrel
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Nagarajan Perumal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Sinha
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Kiran Chaudhary
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
16
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Yang Q, Feng Z, Ding D, Kang C. CD3D and CD247 are the molecular targets of septic shock. Medicine (Baltimore) 2023; 102:e34295. [PMID: 37478215 PMCID: PMC10662883 DOI: 10.1097/md.0000000000034295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Septic shock is a serious systemic disease with circulatory failure and abnormal cell metabolism caused by sepsis. However, the relationship between CD3D and CD247 and septic shock remains unclear. The septic shock datasets GSE33118 and GSE142255 profiles were generated from the gene expression omnibus databases GPl570, GPl17586. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. Gene expression heat map was drawn. Immune infiltration analysis was performed. Comparative toxicogenomics database (CTD) analysis were performed to find the disease most related to the core gene. Targets can was used to screen miRNAs regulating the hub DEGs. 467 DEGs were identified. According to the gene ontology analysis, they were mainly enriched in the regulation of immune response, cell activation, signaling receptor activity, enzyme binding. Kyoto encyclopedia of genes and genomes analysis showed that they were mainly enriched in the TCR signaling pathway, Fc epsilon RI signaling pathway. GSEA showed that the DEGs were mainly enriched in immune response regulation, cell activation, TCR signaling pathway, Fc epsilon RI signaling pathway. Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in go enrichment items in the enrichment items of metascape. PPI networks got 5 core genes. Gene expression heat map showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sepsis shock samples and highly expressed in the normal samples. CTD analysis showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were found to be associated with hemorrhage and necrosis. Low expression of cd3d, CD247 was observed in septic shock, and the lower the level of cd3d, CD247, the worse the prognosis.
Collapse
Affiliation(s)
- Qian Yang
- Intensive Care Unit, Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhijuan Feng
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Danyang Ding
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Ah-Pine F, Khettab M, Bedoui Y, Slama Y, Daniel M, Doray B, Gasque P. On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol Commun 2023; 11:104. [PMID: 37355636 PMCID: PMC10290416 DOI: 10.1186/s40478-023-01605-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Glioblastoma, IDH wild-type is the most common and aggressive form of glial tumors. The exact mechanisms of glioblastoma oncogenesis, including the identification of the glioma-initiating cell, are yet to be discovered. Recent studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesenchymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma-initiating cells, especially with regard to the mesenchymal molecular subtype. These fibroblast-like cells, which derive from the neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro-tumoral effects within the tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of glioblastoma and provides novel research avenues to better understand this lethal disease.
Collapse
Affiliation(s)
- F. Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - M. Khettab
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Slama
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| | - M. Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Médecine d’Urgences-SAMU-SMUR, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - B. Doray
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - P. Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|