1
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 PMCID: PMC11684949 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Pescariu SA, Elagez A, Nallapati B, Bratosin F, Bucur A, Negru A, Gaita L, Citu IM, Popa ZL, Barata PI. Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials. Pharmaceuticals (Basel) 2024; 17:929. [PMID: 39065779 PMCID: PMC11279934 DOI: 10.3390/ph17070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) constitute a significant cause of morbidity and mortality globally, particularly among individuals with type 2 diabetes mellitus (T2DM). Ertugliflozin, a Sodium-Glucose Co-transporter-2 (SGLT2) inhibitor, is hypothesized to confer cardiovascular protection; however, long-term follow-up studies are necessary to support the hypothesis. This systematic review was conducted to evaluate the cardiovascular effects of ertugliflozin in diabetic versus non-diabetic cohorts, focusing on major adverse cardiovascular events (MACEs), hospitalizations for heart failure, and cardiovascular mortality. Adhering to PRISMA guidelines, the review encompassed studies indexed in PubMed, Scopus, and Web of Science up to March 2024. Eligibility was restricted to studies involving T2DM patients undergoing ertugliflozin treatment with reported outcomes relevant to cardiovascular health. Out of 767 initially identified articles, 6 met the inclusion criteria. Data concerning hazard ratios (HR) and confidence intervals (CI) were extracted to compare the effects of ertugliflozin with those of a placebo or other standard therapies. The collective sample size across these studies was 8246 participants. Ertugliflozin was associated with a significant reduction in hospitalizations for heart failure relative to a placebo (HR 0.70, 95% CI 0.54-0.90, p < 0.05). Furthermore, when combined with metformin, ertugliflozin potentially reduced MACEs (HR 0.92, 95% CI 0.79-1.07), although this finding did not reach statistical significance. Importantly, for patients with pre-existing heart failure, ertugliflozin significantly decreased the exacerbations of heart failure (HR 0.53, 95% CI 0.33-0.84, p < 0.01). Overall, ertugliflozin markedly reduces hospitalizations due to heart failure in T2DM patients and may improve additional cardiovascular outcomes. These results endorse the integration of ertugliflozin into therapeutic protocols for T2DM patients at elevated cardiovascular risk and substantiate its efficacy among SGLT2 inhibitors. Continued investigations are recommended to delineate its long-term cardiovascular benefits in diverse patient populations, including the potential impact on arrhythmias.
Collapse
Affiliation(s)
- Silvius Alexandru Pescariu
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.A.P.); (A.N.)
| | - Ahmed Elagez
- Department of General Medicine, Misr University for Science & Technology, Giza 3236101, Egypt;
| | - Balaji Nallapati
- Department of General Medicine, Katuri Medical College and Hospital, Katuri City 522019, India;
| | - Felix Bratosin
- Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adina Bucur
- Department III Functional Sciences, Division of Public Health and Management, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania
| | - Alina Negru
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.A.P.); (A.N.)
| | - Laura Gaita
- Second Department of Internal Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Ioana Mihaela Citu
- First Department of Internal Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Paula Irina Barata
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
- Department of Physiology, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
3
|
Yang X, Chen S, Ji L, Chen Q, Lin C. Design and clinical application of a risk prediction model for diabetic foot. Am J Transl Res 2024; 16:458-465. [PMID: 38463576 PMCID: PMC10918135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To construct and evaluate a nomogram prediction model for the risk of diabetic foot in patients with type 2 diabetes based on their clinical data, and to assist clinical healthcare professionals in identifying high-risk factors and developing targeted intervention measures. METHODS We retrospectively collected clinical data from 478 hospitalized patients with type 2 diabetes at the First Affiliated Hospital of Shantou University Medical College from January 2019 to December 2021. The patients were divided into a diabetic foot group (n=312) and a non-diabetic foot group (n=166) based on whether they had diabetic foot. The baseline data of both groups were collected. Univariate and multivariate analyses as well as logistic regression analysis were conducted to explore the risk factors for diabetic foot. A nomogram prediction model was established using the package "rms" version 4.3. The model was internally validated using the area under the receiver operating characteristic curve (AUC). Additionally, the decision curve analysis (DCA) was performed to evaluate the performance of the nomogram model. RESULTS The results from the logistic regression analysis revealed that being male, smoking, duration of diabetes, glycated hemoglobin, hyperlipidemia, and atherosclerosis were influencing factors for diabetic foot (all P<0.05). The AUC of the model in predicting diabetic foot was 0.804, with a sensitivity of 75.3% and specificity of 74.4%. Harrell's C-index of the nomogram prediction model for diabetic foot was 0.804 (95% CI: 0.762-0.844), with a threshold value of >0.675. The DCA findings demonstrated that the nomogram model provided a net clinical benefit. CONCLUSION The nomogram prediction model constructed in this study showed good predictive performance and can provide a basis for clinical workers to prevent and intervene in diabetic foot, thereby improving the overall diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| | - Shaohong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| | - Leiquan Ji
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| | - Qiaohui Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| | - Chujia Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| |
Collapse
|
4
|
Nitta N, Yoshimatsu R, Iwasa H, Nakaji K, Miyatake K, Nishimori M, Matsumoto T, Yamanishi T, Yamagami T. Difference in arterial FDG accumulation in healthy study participants between digital PET/CT and standard PET/CT. Ann Nucl Med 2024; 38:96-102. [PMID: 37851300 DOI: 10.1007/s12149-023-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE To evaluate the differences in FDG accumulation in arteries throughout the body between digital and standard PET/CT. METHODS Forty-six people who had FDG-PET examinations with a digital PET/CT scanner for health screening between April 2020 and March 2021 and had previous examinations with a standard PET/CT scanner were the study participants. FDG accumulation in arteries throughout the body was visually assessed in each segment. Scan was considered positive when arterial FDG accumulation was equal to or greater than that of the liver. The positivity rates for general arteries and each arterial segment were compared between the two kinds of scanners. If any one of the arterial segments was considered positive, the general arteries were classified as positive. Moreover, the rate of change in results from the standard PET/CT to the digital scanner in the same individual (negative to positive, positive to negative) was examined. RESULTS In the evaluation of general arteries, the positivity rates were 21.7% (10 cases) for the standard PET/CT, whereas positive rates were 97.8% (45 cases) for the digital PET/CT (p < 0.001). In all arterial segments, the positivity rate was significantly higher with the digital PET/CT compared to the standard PET/CT; those with the digital PET/CT were, respectively, 95.7%, 87.0%, 73.9%, 37.0%, 34.8%, and 21.7% in the femoral, brachial, aortic, subclavian, iliac, and carotid arteries. On the other hand, those with the standard PET/CT were 13.0%, 13.0%, 19.6%, 2.2%, 0%, and 4.4% in segments in the above order. Changes from negative to positive were shown in many cases; 35 cases (76.0%) of general arteries, 38 cases (82.6%) for the femoral artery, and 34 cases (73.9%) for the brachial artery. The exception was one case in which a change from positive to negative was confirmed in the carotid artery. In all arteries considered to be positive, FDG accumulation was not greater than but was equal to that in the liver with both scanners. CONCLUSIONS Arterial FDG accumulation was significantly higher with digital PET/CT compared to conventional PET/CT. With digital PET/CT, an arterial FDG accumulation equal to the liver may not to be considered as abnormal accumulation.
Collapse
Affiliation(s)
- Noriko Nitta
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Rika Yoshimatsu
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Hitomi Iwasa
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Kousuke Nakaji
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Kana Miyatake
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Miki Nishimori
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Tomohiro Matsumoto
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Tomoaki Yamanishi
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Takuji Yamagami
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
5
|
Kerkhof PLM, Tona F. Sex differences in diagnostic modalities of atherosclerosis in the macrocirculation. Atherosclerosis 2023; 384:117275. [PMID: 37783644 DOI: 10.1016/j.atherosclerosis.2023.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Asymptomatic atherosclerosis begins early in life and may progress in a sex-specific manner to become the major cause of cardiovascular morbidity and death. As diagnostic tools to evaluate atherosclerosis in the macrocirculation, we discuss imaging methods (in terms of computed tomography, positron emission tomography, intravascular ultrasound, magnetic resonance imaging, and optical coherence tomography), along with derived scores (Agatston, Gensini, Leaman, Syntax), and also hemodynamic indices of vascular stiffness (including flow-mediated dilation, shear stress, pulse pressure, augmentation index, arterial distensibility), assessment of plaque properties (composition, erosion, rupture), stenosis measures such as fractional flow reserve. Moreover, biomarkers including matrix metalloproteinases, vascular endothelial growth factors and miRNAs, as well as the impact of machine learning support, are described. Special attention is given to age-related aspects and sex-specific characteristics, along with clinical implications. Knowledge gaps are identified and directions for future research formulated.
Collapse
Affiliation(s)
- Peter L M Kerkhof
- Dept. Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands.
| | - Francesco Tona
- Dept. Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| |
Collapse
|
6
|
Blanchard I, Vootukuru N, Bhattaru A, Patil S, Rojulpote C. PET Radiotracers in Atherosclerosis: A Review. Curr Probl Cardiol 2023; 48:101925. [PMID: 37392979 DOI: 10.1016/j.cpcardiol.2023.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Traditional atherosclerosis imaging modalities are limited to late stages of disease, prior to which patients are frequently asymptomatic. Positron emission tomography (PET) imaging allows for the visualization of metabolic processes underscoring disease progression via radioactive tracer, allowing earlier-stage disease to be identified. 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) uptake largely reflects the metabolic activity of macrophages, but is unspecific and limited in its utility. By detecting areas of microcalcification, 18F-Sodium Fluoride (18F-NaF) uptake also provides insight into atherosclerosis pathogenesis. Gallium-68 DOTA-0-Tyr3-Octreotate (68Ga-DOTATATE) PET has also shown potential in identifying vulnerable atherosclerotic plaques with high somatostatin receptor expression. Finally, 11-carbon (11C)-choline and 18F-fluoromethylcholine (FMCH) tracers may identify high-risk atherosclerotic plaques by detecting increased choline metabolism. Together, these radiotracers quantify disease burden, assess treatment efficacy, and stratify risk for adverse cardiac events.
Collapse
Affiliation(s)
| | - Nishita Vootukuru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Abhijit Bhattaru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ; Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Chaitanya Rojulpote
- Department of Radiology, University of Pennsylvania, Philadelphia, PA; Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA.
| |
Collapse
|
7
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
8
|
Sang M, Huang Y, Liu Z, Li G, Wang Y, Yuan Z, Dai C, Zheng J. Peroxynitrite/Lipid Droplet Sequence-Activated Dual-Lock Fluorescent Probes Enable Precise Intraoperative Imaging of Atherosclerotic Plaques. ACS Sens 2023; 8:893-903. [PMID: 36757333 DOI: 10.1021/acssensors.2c02590] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The formation of atherosclerotic plaques is the root cause of various cardiovascular diseases (CVDs). Effective CVD interventions thus call for precise identification of the plaques to aid clinical assessment and treatment of such diseases. In this study, we introduced a dual-analyte sequentially activated logic fluorescence reporting system CNN2-B to precisely identify the atherosclerotic plaques in vivo. This probe was achieved by creating a dual-locked fluorescent sensor that permits highly specific and sensitive detection of peroxynitrite and lipid droplets─the two hallmarks of atherosclerosis (AS). The recognition group of the probe removed after reacting with ONOO- and intramolecular charge rearrangement occurred to generate a coumarin derivative structure. This structure had a strong solvent effect; it could recognize lipid droplets (LDs) in cells, thus exhibiting fluorescence without secondary molecular adjustment. The fluorescence was tremendously quenched by double locking; thus, an extreme fluorescence enhancement factor (F/F0) ratio of 365 for CNN2-B was obtained. Importantly, CNN2-B could move from the mitochondria to lipid droplets after being activated. CNN2-B exhibited higher selectivity and signal-to-noise (S/N) ratio than commercial probe hydroxyphenyl fluorescein (HPF). Therefore, atherosclerotic plaques in mouse models were delineated clearly by fluorescence imaging after in situ administration of CNN2-B.
Collapse
Affiliation(s)
- Mangmang Sang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361006, China
| | - Yibo Huang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiwei Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Gang Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361006, China
| | - Yan Wang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361006, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Cuilian Dai
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361006, China
| | - Jinrong Zheng
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361006, China
| |
Collapse
|
9
|
Badin J, Rodenbeck S, McKenney-Drake ML, Sturek M. Multiphasic changes in smooth muscle Ca 2+ transporters during the progression of coronary atherosclerosis. CURRENT TOPICS IN MEMBRANES 2022; 90:95-121. [PMID: 36368876 DOI: 10.1016/bs.ctm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jill Badin
- ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Stacey Rodenbeck
- Department of Biology, Harding University, Searcy, AR, United States
| | - Mikaela L McKenney-Drake
- Butler University, Health Sciences Department, Pharmacy and Health Sciences, Indianapolis, IN, United States
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|