1
|
Lee HJ, Hwang JW, Kim J, Jo AR, Park JH, Jeong YJ, Jang JY, Kim SJ, Song JH, Hoe HS. Erlotinib regulates short-term memory, tau/Aβ pathology, and astrogliosis in mouse models of AD. Front Immunol 2024; 15:1421455. [PMID: 39434878 PMCID: PMC11491340 DOI: 10.3389/fimmu.2024.1421455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that is approved by the FDA to treat non-small cell lung cancer (NSCLC). Several membrane receptors, including EGFR, interact with amyloid β (Aβ), raising the possibility that erlotinib could have therapeutic effects on Alzheimer's disease (AD). However, the effects of erlotinib on Aβ/tau-related pathology and cognitive function in mouse models of AD and its mechanisms of action have not been examined in detail. Methods To investigate the effects of erlotinib on cognitive function and AD pathology, 3 to 6-month-old PS19 mice and 3 to 3.5-month-old 5xFAD mice and WT mice were injected with vehicle (5% DMSO + 10% PEG + 20% Tween80 + 65% D.W.) or erlotinib (20 mg/kg, i.p.) daily for 14 or 21 days. Then, behavioral tests, Golgi staining, immunofluorescence staining, western blotting ELISA, and real-time PCR were conducted. Results and discussion We found that erlotinib significantly enhanced short-term spatial memory and dendritic spine formation in 6-month-old P301S tau transgenic (PS19) mice. Importantly, erlotinib administration reduced tau phosphorylation at Ser202/Thr205 (AT8) and Thr231 (AT180) and further aggregation of tau into paired helical fragments (PHFs) and neurofibrillary tangles (NFTs) in 3-month-old and/or 6-month-old PS19 mice by suppressing the expression of the tau kinase DYRK1A. Moreover, erlotinib treatment decreased astrogliosis in 6-month-old PS19 mice and reduced proinflammatory responses in primary astrocytes (PACs) from PS19 mice. In 3- to 3.5-month-old 5xFAD mice, erlotinib treatment improved short-term spatial memory and hippocampal dendritic spine number and diminished Aβ plaque deposition and tau hyperphosphorylation. Furthermore, erlotinib-treated 5xFAD mice exhibited significant downregulation of astrocyte activation, and treating PACs from 5xFAD mice with erlotinib markedly reduced cxcl10 (reactive astrocyte marker) and gbp2 (A1 astrocyte marker) mRNA levels and proinflammatory cytokine mRNA and protein levels. Taken together, our results suggest that erlotinib regulates tau/Aβ-induced AD pathology, cognitive function, and Aβ/tau-evoked astrogliosis and therefore could be a potent therapeutic drug for ameliorating AD symptoms.
Collapse
Affiliation(s)
- Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - A-Ran Jo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Ji-Yeong Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Su-Jeong Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeong-Heon Song
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| |
Collapse
|
2
|
Hwang JW, Kim J, Park JH, Nam J, Jang JY, Jo A, Lee HJ, Hoe HS. Felodipine attenuates neuroinflammatory responses and tau hyperphosphorylation through JNK/P38 signaling in tau-overexpressing AD mice. Mol Brain 2024; 17:62. [PMID: 39223564 PMCID: PMC11367747 DOI: 10.1186/s13041-024-01137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
We previously demonstrated that felodipine, an L-type calcium channel blocker, inhibits LPS-mediated neuroinflammatory responses in BV2 microglial cells and wild-type mice. However, the effects of felodipine on tau pathology, a hallmark of Alzheimer's disease (AD), have not been explored yet. Therefore, in the present study, we determined whether felodipine affects neuroinflammation and tau hyperphosphorylation in 3-month-old P301S transgenic mice (PS19), an early phase AD mice model for tauopathy. Felodipine administration decreased tauopathy-mediated microglial activation and NLRP3 expression in PS19 mice but had no effect on tauopathy-associated astrogliosis. In addition, felodipine treatment significantly reduced tau hyperphosphorylation at S202/Thr205 and Thr212/Ser214 residues via inhibiting JNK/P38 signaling in PS19 mice. Collectively, our results suggest that felodipine significantly ameliorates tau hyper-phosphorylation and tauopathy-associated neuroinflammatory responses in AD mice model for tauopathy and could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jeongha Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Jinhan Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Ji-Yeong Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Aran Jo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea.
| |
Collapse
|
3
|
He X, Peng Y, Huang S, Xiao Z, Li G, Zuo Z, Zhang L, Shuai X, Zheng H, Hu X. Blood Brain Barrier-Crossing Delivery of Felodipine Nanodrug Ameliorates Anxiety-Like Behavior and Cognitive Impairment in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401731. [PMID: 38981028 PMCID: PMC11425895 DOI: 10.1002/advs.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/29/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder leading to cognitive decline. Excessive cytosolic calcium (Ca2+) accumulation plays a critical role in the pathogenesis of AD since it activates the NOD-like receptor family, pyrin domain containing 3 (NLRP3), switches the endoplasmic reticulum (ER) unfolded protein response (UPR) toward proapoptotic signaling and promotes Aβ seeding. Herein, a liposomal nanodrug (felodipine@LND) is developed incorporating a calcium channel antagonist felodipine for Alzheimer's disease treatment through a low-intensity pulse ultrasound (LIPUS) irradiation-assisted blood brain barrier (BBB)-crossing drug delivery. The multifunctional felodipine@LND is effectively delivered to diseased brain through applying a LIPUS irradiation to the skull, which resulted in a series of positive effects against AD. Markedly, the nanodrug treatment switched the ER UPR toward antioxidant signaling, prevented the surface translocation of ER calreticulin (CALR) in microglia, and inhibited the NLRP3 activation and Aβ seeding. In addition, it promoted the degradation of damaged mitochondria via mitophagy, thereby inhibiting the neuronal apoptosis. Therefore, the anxiety-like behavior and cognitive impairment of 5xFAD mice with AD is significantly ameliorated, which manifested the potential of LIPUS - assisted BBB-crossing delivery of felodipine@LND to serve as a paradigm for AD therapy based on the well-recognized clinically available felodipine.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Yuan Peng
- Department of Rehabilitation MedicineGuangzhou First People's HospitalGuangzhou510180China
| | - Sicong Huang
- School of Materials Science and Engineering Sun Yat‐sen UniversityGuangzhou510275China
| | - Zecong Xiao
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring Institute11 Fengxin RoadGuangzhouGuangdong510663China
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Haiqing Zheng
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| |
Collapse
|
4
|
González-Correa C, Moleón J, Miñano S, Robles-Vera I, Toral M, Barranco AM, Martín-Morales N, O'Valle F, Guerra-Hernández E, Sánchez M, Gómez-Guzmán M, Jiménez R, Romero M, Duarte J. Differing contributions of the gut microbiota to the blood pressure lowering effects induced by first-line antihypertensive drugs. Br J Pharmacol 2024; 181:3420-3444. [PMID: 38770714 DOI: 10.1111/bph.16410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND PURPOSE This study analyses whether first-line antihypertensive drugs ameliorate the dysbiosis state in hypertension, and to test if this modification contributes to their blood pressure (BP) lowering properties in a genetic model of neurogenic hypertension. EXPERIMENTAL APPROACH Twenty-week-old male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were untreated or treated with captopril, amlodipine or hydrochlorothiazide. A faecal microbiota transplantation (FMT) experiment was also performed by gavage of faecal content from donor SHR-treated groups to SHR recipients for 3 weeks. KEY RESULTS Faeces from SHR showed gut dysbiosis, characterized by lower acetate- and higher lactate-producing bacteria and lower strict anaerobic bacteria. All three drugs increased the anaerobic bacteria proportion, captopril and amlodipine restored the proportion of acetate-producing bacterial populations to WKY levels, whereas hydrochlorothiazide decreased butyrate-producing bacteria. Captopril and amlodipine decreased gut pathology and permeability and attenuated sympathetic drive in the gut. Both drugs decreased neuroinflammation and oxidative stress in the hypothalamic paraventricular nuclei. Hydrochlorothiazide was unable to reduce neuroinflammation, gut sympathetic tone and gut integrity. FMT from SHR-amlodipine to SHR decreased BP, ameliorated aortic endothelium-dependent relaxation to acetylcholine, lowered NADPH oxidase activity, aortic Th17 infiltration and reduced neuroinflammation, whereas FMT from SHR-hydrochlorothiazide did not have these effects. CONCLUSIONS AND IMPLICATIONS First-line antihypertensive drugs induced different modifications of gut integrity and gut dysbiosis in SHR, which result in no contribution of microbiota in the BP lowering effects of hydrochlorothiazide, whereas the vasculo-protective effect induced by amlodipine involves gut microbiota reshaping and gut-immune system communication.
Collapse
Affiliation(s)
- Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | | | - Francisco O'Valle
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | | | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
5
|
Facchin BM, Lubschinski TL, Moon YJK, de Oliveira PGF, Beck BK, da Silva Buss Z, Pollo LAE, Biavatti MW, Sandjo LP, Dalmarco EM. Evaluation of the anti-inflammatory effect of 1,4-dihydropyridine derivatives. Fundam Clin Pharmacol 2024; 38:168-182. [PMID: 37558213 DOI: 10.1111/fcp.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Inflammation is a physiological event that protects the organism against different factors that lead to loss of tissue homeostasis. Dihydropyridine (DHP) derivatives are heterocyclic compounds known for their different biological activities, including anti-inflammatory activities. OBJECTIVE To evaluate the anti-inflammatory activity of 1,4-dihydropyridine (1,4-DHP) derivatives using anti-inflammatory models in vitro, in RAW264.7 cells induced by lipopolysaccharide (LPS) and in vivo using the acute lung injury (ALI) model in mice. RESULTS Fifteen compounds derived from 1,4-DHP were tested in RAW264.7 cells for their cytotoxic effect and cell viability. Thereafter, only the six compounds that showed the highest cell viability were tested for the production or inhibition of the pro-inflammatory cytokine interleukin 6 (IL-6). The best compound (compound 4) was tested for its anti-inflammatory effects in vitro and in vivo, showing inhibition of nitric oxide (NO), pro-inflammatory cytokines, increased phagocytic activity, and an increase in IL-10 in vitro. In in vivo tests, compound 4 also reduces the levels of NO, myeloperoxidase (MPO) activity, leukocyte migration, and exudation, as well as reducing the levels of tumor necrosis factor-alpha (TNF-α) and IL-6 and preventing the loss in the lung architecture. CONCLUSION This compound showed important anti-inflammatory activity, with a significant ability to reduce the production of pro-inflammatory mediators and increase the phagocytic activity of macrophages and anti-inflammatory mediator secretion (IL-10). These findings led us to hypothesize that this compound can repolarize the macrophage response to an anti-inflammatory profile (M2). Moreover, it was also able to maintain its anti-inflammatory activity in vivo experiments.
Collapse
Affiliation(s)
- Bruno Matheus Facchin
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Yeo Jim Kinoshita Moon
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Bianca Klafke Beck
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
6
|
Zhang Q, Sun W, Wang Q, Zheng X, Zhang R, Zhang N. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways. Mol Nutr Food Res 2024; 68:e2300602. [PMID: 38054637 DOI: 10.1002/mnfr.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| |
Collapse
|
7
|
Shishkina GT, Kalinina TS, Lanshakov DA, Bulygina VV, Komysheva NP, Bannova AV, Drozd US, Dygalo NN. Genes Involved by Dexamethasone in Prevention of Long-Term Memory Impairment Caused by Lipopolysaccharide-Induced Neuroinflammation. Biomedicines 2023; 11:2595. [PMID: 37892969 PMCID: PMC10604440 DOI: 10.3390/biomedicines11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory activation within the brain is linked to a decrease in cognitive abilities; however, the molecular mechanisms implicated in the development of inflammatory-related cognitive dysfunction and its prevention are poorly understood. This study compared the responses of hippocampal transcriptomes 3 months after the striatal infusion of lipopolysaccharide (LPS; 30 µg), resulting in memory loss, or with dexamethasone (DEX; 5 mg/kg intraperitoneal) pretreatment, which abolished the long-term LPS-induced memory impairment. After LPS treatment, a significant elevation in the expression of immunity/inflammatory-linked genes, including chemokines (Cxcl13), cytokines (Il1b and Tnfsf13b), and major histocompatibility complex (MHC) class II members (Cd74, RT1-Ba, RT1-Bb, RT1-Da, and RT1-Db1) was observed. DEX pretreatment did not change the expression of these genes, but significantly affected the expression of genes encoding ion channels, primarily calcium and potassium channels, regulators of glutamate (Slc1a2, Grm5, Grin2a), and GABA (Gabrr2, Gabrb2) neurotransmission, which enriched in such GO biological processes as "Regulation of transmembrane transport", "Cognition", "Learning", "Neurogenesis", and "Nervous system development". Taken together, these data suggest that (1) pretreatment with DEX did not markedly affect LPS-induced prolonged inflammatory response; (2) DEX pretreatment can affect processes associated with glutamatergic signaling and nervous system development, possibly involved in the recovery of memory impairment induced by LPS.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; (T.S.K.); (D.A.L.); (V.V.B.); (N.P.K.); (A.V.B.); (U.S.D.); (N.N.D.)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu J, Yang C, Zeng S, Wang X, Yang P, Qin L. Disturbance of neuron-microglia crosstalk mediated by GRP78 in Neuropsychiatric systemic lupus erythematosus mice. J Neuroinflammation 2023; 20:150. [PMID: 37365565 DOI: 10.1186/s12974-023-02832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious phenotype of systemic lupus erythematosus (SLE). The disturbance of neuron-microglia crosstalk is recently revealed in many neuropsychiatric diseases but was not well studied in NPSLE. We found glucose regulatory protein 78 (GRP78), a marker of endoplasmic reticulum stress, was significantly increased in the cerebrospinal fluid (CSF) of our NPSLE cohort. We, therefore, investigated whether GRP78 can act as a mediator between the neuron-microglia crosstalk and is involved in the pathogenic process of NPSLE. METHODS Serum and CSF parameters were analyzed in 22 NPSLE patients and controls. Anti-DWEYS IgG was injected intravenously into mice to establish a model of NPSLE. Behavioral assessment, histopathological staining, RNA-seq analyses, and biochemical assays were performed to examine the neuro-immunological alterations in the mice. Rapamycin was intraperitoneally administered to define the therapeutic effect. RESULTS The level of GRP78 was elevated significantly in the CSF of the patients with NPSLE. An increase in GRP78 expression, accompanied by neuroinflammation and cognitive impairment, was also found in the brain tissues of the NPSLE model mice induced by anti-DWEYS IgG deposition on hippocampal neurons. In vitro experiments demonstrated that anti-DWEYS IgG could stimulate neurons to release GRP78, which activated microglia via TLR4/MyD88/NFκB pathway to produce more pro-inflammatory cytokines and promote migration and phagocytosis. Rapamycin ameliorated GRP78-inducing neuroinflammation and cognitive impairment in anti-DWEYS IgG-transferred mice. CONCLUSION GRP78 acts as a pathogenic factor in neuropsychiatric disorders via interfering neuron-microglia crosstalk. Rapamycin may be a promising therapeutic candidate for NPSLE.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Siyuan Zeng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
9
|
Park JH, Hwang JW, Lee HJ, Jang GM, Jeong YJ, Cho J, Seo J, Hoe HS. Lomerizine inhibits LPS-mediated neuroinflammation and tau hyperphosphorylation by modulating NLRP3, DYRK1A, and GSK3α/β. Front Immunol 2023; 14:1150940. [PMID: 37435081 PMCID: PMC10331167 DOI: 10.3389/fimmu.2023.1150940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Lomerizine is a calcium channel blocker that crosses the blood-brain barrier and is used clinically in the treatment of migraines. However, whether lomerizine is beneficial in modulating neuroinflammatory responses has not been tested yet. Methods To assess the potential of lomerizine for repurposing as a treatment for neuroinflammation, we investigated the effects of lomerizine on LPS-induced proinflammatory responses in BV2 microglial cells, Alzheimer's disease (AD) excitatory neurons differentiated from induced pluripotent stem cells (iPSCs), and in LPS-treated wild type mice. Results In BV2 microglial cells, lomerizine pretreatment significantly reduced LPS-evoked proinflammatory cytokine and NLRP3 mRNA levels. Similarly, lomerizine pretreatment significantly suppressed the increases in Iba-1, GFAP, proinflammatory cytokine and NLRP3 expression induced by LPS in wild-type mice. In addition, lomerizine posttreatment significantly decreased LPS-stimulated proinflammatory cytokine and SOD2 mRNA levels in BV2 microglial cells and/or wild-type mice. In LPS-treated wild-type mice and AD excitatory neurons differentiated from iPSCs, lomerizine pretreatment ameliorated tau hyperphosphorylation. Finally, lomerizine abolished the LPS-mediated activation of GSK3α/β and upregulation of DYRK1A, which is responsible for tau hyperphosphorylation, in wild-type mice. Discussion These data suggest that lomerizine attenuates LPS-mediated neuroinflammatory responses and tau hyperphosphorylation and is a potential drug for neuroinflammation- or tauopathy-associated diseases.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Geum Mi Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Joonho Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| |
Collapse
|