1
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Polyzos SA, Targher G. Hepatic thyroid hormone receptor-β signalling: Mechanisms and recent advancements in the treatment of metabolic dysfunction-associated steatohepatitis. Diabetes Obes Metab 2024. [PMID: 39658733 DOI: 10.1111/dom.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
The pharmacotherapy of metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, the metabolic dysfunction-associated steatohepatitis (MASH), remains a hot topic in research and a largely unmet need in clinical practice. As the first approval of a disease-specific drug, resmetirom, was regarded as a milestone for the management of this common liver disease, this comprehensive and updated review aimed to highlight the importance of the hepatic thyroid hormone (TH) receptor (THR)-β signalling for the treatment of MASH, with a special focus on resmetirom. First, the genomic and non-genomic actions of the liver-directed THR-β mediated mechanisms are summarized. THR-β has a key role in hepatic lipid and carbohydrate metabolism; disruption of THR-β signalling leads to dysmetabolism, thus promoting MASLD and possibly its progression to MASH and cirrhosis. In the clinical setting, this is translated into a significant association between primary hypothyroidism and MASLD, as confirmed by recent meta-analyses. An association between MASLD and subclinical intrahepatic hypothyroidism (i.e. a state of relatively low hepatic triiodothyronine concentrations, with circulating TH concentrations within the normal range) is also emerging and under investigation. In line with this, the favourable results of the phase 3 placebo-controlled MAESTRO trials led to the recent conditional approval of resmetirom by the US FDA for treating adults with MASH and moderate-to-advanced fibrosis. This conditional approval of resmetirom opened a new window to the management of this common and burdensome liver disease, thus bringing the global scientific community in front of new perspectives and challenges.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
3
|
Meijnikman AS, Bruinstroop E. Non-responder on thyroid hormone receptor-β agonist? Bacteroides thetaiotaomicron to the rescue! J Hepatol 2024:S0168-8278(24)02709-0. [PMID: 39550038 DOI: 10.1016/j.jhep.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Abraham S Meijnikman
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Ezhilarasan D. Beyond resmetirom approval for NAFLD: what has to be done? Drug Discov Today 2024; 29:104185. [PMID: 39304033 DOI: 10.1016/j.drudis.2024.104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
5
|
Brisnovali NF, Haney C, Goedeke L. Rezdiffra™ (resmetirom): a THR-β agonist for non-alcoholic steatohepatitis. Trends Pharmacol Sci 2024; 45:1081-1082. [PMID: 39304473 PMCID: PMC11560534 DOI: 10.1016/j.tips.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Niki F Brisnovali
- Department of Medicine (Cardiology), Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Connor Haney
- Department of Medicine (Cardiology), Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine (Endocrinology), Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Ratziu V, Scanlan TS, Bruinstroop E. Thyroid hormone receptor-β analogs for the treatment of Metabolic Dysfunction-Associated Steatohepatitis (MASH). J Hepatol 2024:S0168-8278(24)02639-4. [PMID: 39428045 DOI: 10.1016/j.jhep.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The association between suboptimal thyroid function ((sub)clinical hypothyroidism or low normal thyroid function) and the metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD) is clearly established. Furthermore, in MASLD, thyroid hormones have low intracellular concentrations and the activation of the thyroid hormone receptor (THR) is reduced. Administration of thyroid hormone has been shown to reduce liver triglycerides by stimulating fatty acid disposal through lipophagy and beta-oxidation, and to lower LDL-cholesterol. As thyroid hormone exerts it's effects in many different organs, including heart and bone, several drug candidates have been developed acting as selective thyromimetics for the THR-β nuclear receptor with potent and targeted liver actions. Importantly, these compounds have reduced affinity for the THR-α nuclear receptor and tissue distribution profiles that differ from endogenous thyroid hormones thereby reducing unwanted cardiovascular side effects. The most advanced compound, resmetirom, is an oral drug that demonstrated, in a large phase 3 trial in MASH patients, the ability to remove liver fat, reduce aminotransferase levels and improve atherogenic dyslipidemia with a good tolerability profile. This translated into histological improvement that led to accelerated approval of this drug for active fibrotic steatohepatitis, a milestone achievement as a first MASH drug.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
8
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3. [DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractCurrent treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou, Zhejiang 310024 , China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou, Zhejiang 310024 , China
| |
Collapse
|
9
|
Levien TL, Baker DE. Resmetirom. Hosp Pharm 2024:00185787241278571. [PMID: 39558940 PMCID: PMC11569717 DOI: 10.1177/00185787241278571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy and Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
Affiliation(s)
- Terri L. Levien
- Pharmacotherapy Department, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Danial E. Baker
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
10
|
Suvarna R, Shetty S, Pappachan JM. Efficacy and safety of Resmetirom, a selective thyroid hormone receptor-β agonist, in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD): a systematic review and meta-analysis. Sci Rep 2024; 14:19790. [PMID: 39187533 PMCID: PMC11347689 DOI: 10.1038/s41598-024-70242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an important public health problem owing to its high prevalence and associated morbidity and mortality secondary to progressive liver disease and cardiovascular events. Resmetirom, a selective thyroid hormone receptor-β agonist has been developed as a therapeutic modality for MASLD. This systematic review and meta-analysis aimed to evaluate the effectiveness and safety of resmetirom compared to a placebo in the treatment of MASLD. Eligible studies were systematically identified by screening PubMed, Scopus, Web of Science, Cochrane library, Embase, and ClinicalTrials.gov from 2014 to 2024. Only randomized controlled trials comparing the efficacy and safety of resmetirom in the treatment of MASLD against placebo were included in the analysis. Meta-analysis was performed using RevMan 5.4 software. Four studies with low risk of bias and involving a total of 2359 participants were identified. The metanalysis included only three clinical trials with 2234 participants. A significant reduction in MRI-proton density fat fraction (MRI-PDFF) with 80 mg Resmetirom compared to that with placebo [SMD - 27.74 (95% CI - 32.05 to - 32.42), p < 0.00001] at 36-52 weeks as well as at 12-16 weeks [SMD - 30.92 (95% CI - 36.44 to - 25.40), p < 0.00001]. With Resmetirom 100 mg dose at 36-52 weeks [SMD - 36.05 (95% CI - 40.67 to - 31.43), p < 0.00001] and 12-16 weeks [SMD - 36.89 (95% CI - 40.73 to - 33.05), p < 0.00001] were observed. Resmetirom treatment was associated with a significant reduction in LDL-c triglyceride, lipoproteins. and liver enzymes. There was significant reduction FT4 and increase in SHBG and sex steroids with Resmetirom compared to placebo. There was no major difference in the overall treatment emergent adverse events at 80 mg [OR 1.55 (95% CI 0.84 to 2.87), and 100 mg [OR 1.13 (95% CI 0.78 to 1.63), doses of Resmetirom compared to placebo. However, gastrointestinal adverse events diarrhoea and nausea occurred in ≥ 10% in the Resmetirom group compared to placebo at < 12 week. Resmetirom treatment showed modest efficacy in treating MASLD with reduction in MRI-PDFF, LDL-c, triglyceride, lipoproteins, liver enzymes and NASH biomarkers without significant safety concerns. Larger and long-term RCTs may further confirm this promising outcomes of Resmetirom use in MASLD.
Collapse
Affiliation(s)
- Renuka Suvarna
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, United Kingdom
| |
Collapse
|
11
|
Bodnar TW, McCurdy HM. Resmetirom: New Drug, Familiar Challenges? Endocr Pract 2024; 30:768-769. [PMID: 38852783 DOI: 10.1016/j.eprac.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Timothy W Bodnar
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan; Section of Endocrinology & Metabolism, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| | - Heather M McCurdy
- Section of Gastroenterology, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
12
|
Keam SJ. Resmetirom: First Approval. Drugs 2024; 84:729-735. [PMID: 38771485 DOI: 10.1007/s40265-024-02045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Resmetirom (Rezdiffra™) is an oral thyroid hormone receptor-β (THR-β) agonist being developed by Madrigal Pharmaceuticals, Inc., to target the key underlying causes of metabolic dysfunction associated steatohepatitis (MASH) [previously known as nonalcoholic steatohepatitis (NASH)]. In March 2024, resmetirom was approved for use (under accelerated approval) in conjunction with diet and exercise for the treatment of adults with noncirrhotic NASH with moderate to advanced liver fibrosis (consistent with stages F2 to F3 fibrosis) in the USA. Resmetirom is also under regulatory review in the EU for the treatment of MASH/NASH. This article summarizes the milestones in the development of resmetirom leading to this first approval for the treatment of adults with MASH/NASH.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
13
|
Kuchay MS, Isaacs S, Misra A. Intrahepatic hypothyroidism in MASLD: Role of liver-specific thyromimetics including resmetirom. Diabetes Metab Syndr 2024; 18:103034. [PMID: 38714040 DOI: 10.1016/j.dsx.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND AIMS Thyroid hormones are important regulators of hepatic lipid homeostasis and whole-body energy expenditure. Recent evidence suggests that euthyroid individuals with metabolic dysfunction-associated steatohepatitis (MASH) develop intrahepatic hypothyroidism that promotes progression of MASH. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases from inception till March 2024, using the following keywords: hypothyroidism and nonalcoholic fatty liver disease; MASLD and thyroid function; intrahepatic hypothyroidism; TRβ agonists; and resmetirom. Relevant studies were extracted that described pathogenesis of MASH in the context of thyroid functions. RESULTS In euthyroid individuals with MASH, there is decreased conversion of prohormone thyroxine (T4) to bioactive tri-iodothyronine (T3) and increased conversion of T4 to inactive metabolite reverse T3 (rT3). Consequently, reduced levels of T3 results in impaired intrahepatic TRβ signaling, a state of intrahepatic hypothyroidism, which promotes progression of MASH. Hepatic TRβ activation leads to metabolically beneficial effects in the liver including mitochondrial fatty acid uptake and β-oxidation, mitochondrial biogenesis, increasing surface low-density lipoprotein (LDL) receptor density and lowering of circulatory LDL-cholesterol. In recent years, selective thyroid hormone mimetics that exhibit TRβ-selective binding and liver-selective uptake have been designed. Resmetirom, a liver-specific thyromimetic, improves intrahepatic TRβ signaling and in clinical trials significantly improved liver inflammation, fibrosis and lipid profile in patients with MASH. CONCLUSIONS In euthyroid individuals with MASH, development of intrahepatic hypothyroidism results in further progression of the disease. In clinical trials, resmetirom treatment results in a significant improvement in steatosis, inflammation and fibrosis and is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of noncirrhotic MASH with moderate to advanced fibrosis.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Scott Isaacs
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anoop Misra
- Fortis CDOC Hospital for Diabetes and Allied Sciences, New Delhi, India
| |
Collapse
|
14
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
15
|
Manka P, Coombes JD, Sydor S, Swiderska-Syn MK, Best J, Gauthier K, van Grunsven LA, Oo YH, Wang C, Diehl AM, Hönes GS, Moeller LC, Figge A, Boosman RJ, Faber KN, Tannapfel A, Goetze O, Aspichueta P, Lange CM, Canbay A, Syn WK. Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells. Liver Int 2024; 44:125-138. [PMID: 37872645 DOI: 10.1111/liv.15759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.
Collapse
Affiliation(s)
- Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason D Coombes
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Marzena K Swiderska-Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Barnard Lyon, Lyon, France
| | - Leo A van Grunsven
- Department of Basic (Bio-)medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ye H Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, Birmingham Advanced Cell Therapy Facility, University of Birmingham, Birmingham, UK
| | - Cindy Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Georg S Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Figge
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - René J Boosman
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Oliver Goetze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Christian M Lange
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
16
|
Lopez-Alcantara N, Oelkrug R, Sentis SC, Kirchner H, Mittag J. Lack of thyroid hormone receptor beta is not detrimental for non-alcoholic steatohepatitis progression. iScience 2023; 26:108064. [PMID: 37822510 PMCID: PMC10563054 DOI: 10.1016/j.isci.2023.108064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Agonists for thyroid hormone receptor β (TRβ) show promise in preclinical studies and clinical trials to improve non-alcoholic fatty liver disease. A recent study on human livers, however, revealed reduced TRβ expression in non-alcoholic steatohepatitis (NASH), indicating a developing thyroid hormone resistance, which could constitute a major obstacle for those agonists. Using a rapid NASH paradigm combining choline-deficient high-fat diet and thermoneutrality, we confirm that TRβ declines during disease progression in mice similar to humans. Contrary to expectations, mice lacking TRβ showed less liver fibrosis, and NASH marker genes were not elevated. Conversely, increasing TRβ expression in wild-type NASH mice using liver-targeted gene therapy did not improve histology, gene expression, or metabolic parameters, indicating that TRβ receptor levels are of minor relevance for NASH development and progression in our model, and suggest that liver-rather than isoform-specificity might be more relevant for NASH treatment with thyroid hormone receptor agonists.
Collapse
Affiliation(s)
- Nuria Lopez-Alcantara
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebecca Oelkrug
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Sarah Christine Sentis
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henriette Kirchner
- Institut für Humangenetik, AG Epigenetik und Metabolismus, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
17
|
Brent GA. A Historical Reflection on Scientific Advances in Understanding Thyroid Hormone Action. Thyroid 2023; 33:1140-1149. [PMID: 37594753 DOI: 10.1089/thy.2022.0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Background: Thyroid hormone (TH) has actions in every tissue of the body and is essential for normal development, as well as having important actions in the adult. The earliest markers of TH action that were identified and monitored clinically, even before TH could be measured in serum, included oxygen consumption, basal metabolic rate, serum cholesterol, and deep tendon reflex time. Cellular, rodent, amphibian, zebrafish, and human models have been used to study TH action. Summary: Early studies of the mechanism of TH action focused on saturable-specific triiodothyronine (T3) nuclear binding and direct actions of T3 that altered protein expression. Additional effects of TH were recognized on mitochondria, stimulation of ion transport, especially the sodium potassium ATPase, augmentation of adrenergic signaling, role as a neurotransmitter, and direct plasma membrane effects. The cloning of the thyroid hormone receptor (THR) genes in 1986 and report of the THR crystal structure in 1995 produced rapid progress in understanding the mechanism of TH nuclear action, as well as the development of modified THR ligands. These findings revealed nuances of TH signaling, including the role of nuclear receptor coactivators and corepressors, repression of positively stimulated genes by the unliganded receptor, THR isoform-specific actions of TRα (THRA) and TRβ (THRB), and THR binding DNA as a heterodimer with retinoid-x-receptor (RXR) for genes positively regulated by TH. The identification of genetic disorders of TH transport and signaling, especially Resistance to Thyroid Hormone (RTH) and monocarboxylate transporter 8 (Mct8) defects, has been highly informative with respect to the mechanism of TH action. Conclusions: The impact of THR isoform, post-translational modifications, receptor cofactors, DNA response element, and selective TH tissue uptake, on TH action, have clinical implications for diagnosing and treating thyroid disease. Additionally, these findings have led to the development of novel TH and TH analogue therapies for metabolic, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Gregory A Brent
- Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
18
|
Karim G, Bansal MB. Resmetirom: An Orally Administered, Smallmolecule, Liver-directed, β-selective THR Agonist for the Treatment of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:60-70. [PMID: 37313239 PMCID: PMC10258622 DOI: 10.17925/ee.2023.19.1.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty liver disease, including non-alcoholic fatty liver (NAFL) and its more progressive form, non-alcoholic steatohepatitis (NASH). The prevalence of NAFLD/NASH along with type 2 diabetes and obesity is rising worldwide. In those who develop NASH, unlike those with bland steatosis (NAFL), lipotoxic lipids drive hepatocyte injury, inflammation and stellate cell activation leading to progressive accumulation of collagen or fibrosis, ultimately leading to cirrhosis and increased risk of hepatocellular carcinoma. Hypothyroidism is associated with NAFLD/NASH; specifically, intrahepatic hypothyroidism drives lipotoxicty in preclinical models. Agonists of thyroid hormone receptor (THR)-β, which is primarily found in the liver, can promote lipophagy, mitochondrial biogenesis and mitophagy, stimulating increased hepatic fatty acid β-oxidation, and thereby decreasing the burden of lipotoxic lipids, while promoting low-density lipoprotein (LDL) uptake and favourable effects on lipid profiles. A number of THR-β agonists are currently being investigated for NASH. This review focuses on resmetirom, an orally administered, once-daily, small-molecule, liver-directed, ß-selective THR agonist, as it is furthest along in development. Data from completed clincal studies outlined in this review demonstrate that resmetirom is effective in reducing hepatic fat content as measured by magnetic resonance imaging-derived proton density fat fraction, reduces liver enzymes, improves non-i nvasive markers of liver fibrogenesis and decreases liver stiffness, while eliciting a favourable cardiovascular profile with a reduction in serum lipids, including LDL cholesterol. Topline phase III biopsy data showed resolution of NASH and/or fibrosis improvement after 52 weeks of treatment, with more detailed peer-reviewed findings anticipated in order to certify these findings. Longer term clinical outcomes from both MAESTRO-NASH and MAESTRO-NASH OUTCOMES will be a pivotal juncture in the drug's road towards being approved as a NASH therapeutic.
Collapse
Affiliation(s)
- Gres Karim
- Department of Medicine, Mount Sinai Israel, New York, NY, USA
| | - Meena B Bansal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|