1
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Rajput Y, Neral A, Sherwani N, Jain V, Sahu M, Paikra F, Kushwaha A, Sahu A, Lodhi H, Sundrani O, Panda RK, Jain V, Shammas MA, Pal J. A novel metric-based approach of scoring early host immune response from oro-nasopharyngeal swabs predicts COVID-19 outcome. Sci Rep 2024; 14:19510. [PMID: 39174586 PMCID: PMC11341902 DOI: 10.1038/s41598-024-70161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Unpredictable fatal outcome of COVID-19 is attributed to dysregulated inflammation. Impaired early adaptive immune response leads to late-stage inflammatory outcome. The purpose of this study was to develop biomarkers for early detection of host immune impairment at first diagnosis from leftover RNA samples, which may in turn identify high risk patients. Leftover RNA samples of COVID-19 patients at first diagnosis were stored. Following prospective follow-up, the samples were shorted and categorized into outcome groups. Impaired adaptive T cell response (severity score) and Impaired IL-10 response (undetectable IL-10 in the presence of high expression of a representative interferon response gene) were determined by RT-PCR based assay. We demonstrate that a T cell response based 'severity score' comprising rational combination of Ct values of a target genes' signature can predict high risk noncomorbid potentially critical COVID-19 patients with a sensitivity of 91% (95% CI 58.7-99.8) and specificity of 92.6% (95% CI 75.7-99) (AUC:0.88). Although inclusion of comorbid patients reduced sensitivity to 77% (95% CI 54.6-92.2), the specificity was still 94% (95% CI 79.8-99.3) (AUC:0.82). The same for 'impaired IL-10 response' were little lower to predict high risk noncomorbid patients 64.2% (95% CI 35.1-87.2) and 82% (95% CI 65.5-93.2) respectively. Inclusion of comorbid patients drastically reduce sensitivity and specificity51.6% (95% CI 33.1-69.8) and 80.5% (95% CI 64.0-91.8) respectively. As best of our knowledge this is the first demonstration of a metric-based approach showing the 'severity score' as an indicator of early adoptive immune response, could be used as predictor of severe COVID-19 outcome at the time of first diagnosis using the same leftover swab RNA. The work flow could reduce expenditure and reporting time of the prognostic test for an earliest clinical decision ensuring possibility of early rational management.
Collapse
Affiliation(s)
- Yogita Rajput
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Arvind Neral
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
- Department of Pathology, Pt. J.N.M. Medical College, Raipur, C.G, India
| | - Nikita Sherwani
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Vijaylakshmi Jain
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Malti Sahu
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Fulsay Paikra
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Aarti Kushwaha
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Aparna Sahu
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Heeramani Lodhi
- Department of Anaesthesia and Pain Management, Pt. J.N.M. Medical College, Raipur, C.G, India
| | - Omprakash Sundrani
- Department of Critical Care Medicine, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Ravindra Kumar Panda
- Department of Respiratory Medicine, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Vinit Jain
- Superintendent (past), Dr. BRAM Hospital Raipur CG and Department of Orthopaedics, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute and VA Health Care System, Boston, MA, USA
| | - Jagannath Pal
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India.
| |
Collapse
|
3
|
Lu J, Chen Y, Zhou K, Ling Y, Qin Q, Lu W, Qin L, Mou C, Zhang J, Zheng X, Qin K. Immune characteristics of kidney transplant recipients with acute respiratory distress syndrome induced by COVID-19 at single-cell resolution. Respir Res 2024; 25:34. [PMID: 38238762 PMCID: PMC10795319 DOI: 10.1186/s12931-024-02682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND COVID-19-induced acute respiratory distress syndrome (ARDS) can result in tissue damage and multiple organ dysfunction, especially in kidney transplant recipients (KTRs) receiving immunosuppressive drugs. Presently, single-cell research on COVID-19-induced ARDS is considerably advanced, yet knowledge about ARDS in KTRs is still constrained. METHODS Single-cell RNA sequencing (scRNA-seq) analysis was performed to construct a comprehensive single-cell immune landscape of the peripheral blood mononuclear cells (PBMCs) of eight patients with COVID-19-induced ARDS, five KTRs with COVID-19-induced ARDS, and five healthy individuals. Subsequently, we conducted a comprehensive bioinformatics analysis, including cell clustering, enrichment analysis, trajectory analysis, gene regulatory network analysis, and cell-cell interaction analysis, to investigate the heterogeneity of the immune microenvironment in KTRs with ARDS. RESULT Our study revealed that KTRs exhibit significant heterogeneity with COVID-19-induced ARDS compared with those of other individuals, with significant reductions in T cells, as well as an abnormal proliferation of B cells and monocytes. In the context of dual influences from immunosuppression and viral infection, KTRs exhibited more specific plasma cells, along with significant enrichment of dysfunctional GZMB and XAF1 double-positive effector T cells and IFI27-positive monocytes. Additionally, robust communication existed among T cells and monocytes in cytokine signaling. These effects impede the process of immune reconstitution in KTR patients. CONCLUSION Our findings suggest that KTRs with COVID-19-induced ARDS show elevated antibody levels, impaired T cell differentiation, and dysregulation of innate immunity. In summary, this study provides a theoretical foundation for a comprehensive understanding of COVID-19-induced ARDS in KTRs.
Collapse
Affiliation(s)
- Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yicong Ling
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weisheng Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Chenglin Mou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
- Department of Anesthesiology, Guilin People's Hospital, Guilin, 541002, China.
| |
Collapse
|
4
|
Szekanecz Z, Vokó Z, Surján O, Rákóczi É, Szamosi S, Szűcs G, Szekanecz É, Müller C, Kiss Z. Effectiveness and waning of protection with the BNT162b2 vaccine against the SARS-CoV-2 Delta variant in immunocompromised individuals. Front Immunol 2023; 14:1247129. [PMID: 38022626 PMCID: PMC10652789 DOI: 10.3389/fimmu.2023.1247129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction In Hungary, the HUN-VE 3 study determined the comparative effectiveness of various primary and booster vaccination strategies during the Delta COVID-19 wave. That study included more than 8 million 18-100-year-old individuals from the beginning of the pandemic. Immunocompromised (IC) individuals have increased risk for COVID-19 and disease course might be more severe in them. In this study, we wished to estimate the risk of SARS-CoV-2 infection and COVID-19 related death in IC individuals compared to healthy ones and the effectiveness of the BNT162b2 vaccine by reassessing HUN-VE 3 data. Patients and methods Among the 8,087,988 individuals undergoing follow-up from the onset of the pandemic in the HUN-VE 3 cohort, we selected all the 263,116 patients with a diagnosis corresponding with IC and 6,128,518 controls from the second wave, before vaccinations started. The IC state was defined as two occurrences of corresponding ICD-10 codes in outpatient or inpatient claims data since 1 January, 2013. The control group included patients without chronic diseases. The data about vaccination, SARS-CoV-2 infection and COVID-19 related death were obtained from the National Public Health Center (NPHC) during the Delta wave. Cases of SARS-CoV-2 infection were reported on a daily basis using a centralized system via the National Public Health Center (NPHC). Results Out of the 263,116 IC patients 12,055 patients (4.58%) and out of the 6,128,518 healthy controls 202,163 (3.30%) acquired SARS-CoV-2 infection. Altogether 436 IC patients and 2141 healthy controls died in relation to COVID-19. The crude incidence rate ratio (IRR) of SARS-CoV-2 infection was 1.40 (95%CI: 1.37-1.42) comparing IC patients to healthy controls. The crude mortality rate ratio was 4.75 (95%CI: 4.28-5.27). With respect to SARS-CoV-2 infection, interestingly, the BNT162b2 vaccine was more effective in IC patients compared to controls. Primary vaccine effectiveness (VE) was higher in IC patients compared to controls and the booster restored VE after waning. VE regarding COVID-19 related death was less in IC patients compared to healthy individuals. Booster vaccination increased VE against COVID-19-related death in both IC patients and healthy controls. Conclusion There is increased risk of SARS-CoV-2 infection and COVID-19 related mortality in IC patient. Moreover, booster vaccination using BNT162b2 might restore impaired VE in these individuals.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Vokó
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
- Syreon Research Institute, Budapest, Hungary
| | - Orsolya Surján
- Department of Deputy Chief Medical Officer II., National Public Health Center Management, Budapest, Hungary
| | - Éva Rákóczi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szekanecz
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Cecília Müller
- Department of Chief Medical Officer, National Public Health Center Management, Budapest, Hungary
| | - Zoltán Kiss
- Second Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
5
|
Rao SS, Lunde HS, Dolan DWP, Fond AK, Petersen K, Haugland GT. Transcriptome-wide analyses of early immune responses in lumpfish leukocytes upon stimulation with poly(I:C). Front Immunol 2023; 14:1198211. [PMID: 37388730 PMCID: PMC10300353 DOI: 10.3389/fimmu.2023.1198211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Background Both bacterial and viral diseases are a major threat to farmed fish. As the antiviral immune mechanisms in lumpfish (Cyclopterus lumpus L.) are poorly understood, lumpfish leukocytes were stimulated with poly(I:C), a synthetic analog of double stranded RNA, which mimic viral infections, and RNA sequencing was performed. Methods To address this gap, we stimulated lumpfish leukocytes with poly(I:C) for 6 and 24 hours and did RNA sequencing with three parallels per timepoint. Genome guided mapping was performed to define differentially expressed genes (DEGs). Results Immune genes were identified, and transcriptome-wide analyses of early immune responses showed that 376 and 2372 transcripts were significantly differentially expressed 6 and 24 hours post exposure (hpe) to poly(I:C), respectively. The most enriched GO terms when time had been accounted for, were immune system processes (GO:0002376) and immune response (GO:0006955). Analysis of DEGs showed that among the most highly upregulated genes were TLRs and genes belonging to the RIG-I signaling pathway, including LGP2, STING and MX, as well as IRF3 and IL12A. RIG-I was not identified, but in silico analyses showed that genes encoding proteins involved in pathogen recognition, cell signaling, and cytokines of the TLR and RIG-I signaling pathway are mostly conserved in lumpfish when compared to mammals and other teleost species. Conclusions Our analyses unravel the innate immune pathways playing a major role in antiviral defense in lumpfish. The information gathered can be used in comparative studies and lay the groundwork for future functional analyses of immune and pathogenicity mechanisms. Such knowledge is also necessary for the development of immunoprophylactic measures for lumpfish, which is extensively cultivated for use as cleaner fish in the aquaculture for removal of sea lice from Atlantic salmon (Salmo salar L.).
Collapse
Affiliation(s)
- Shreesha S. Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S. Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - David W. P. Dolan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Amanda K. Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Gyri T. Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Kapten K, Orczyk K, Smolewska E. Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Arch Immunol Ther Exp (Warsz) 2023; 71:7. [PMID: 36810662 PMCID: PMC9943048 DOI: 10.1007/s00005-023-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its mechanisms have been thoroughly studied by researchers all over the world with the hope of finding answers that may aid the discovery of new treatment options or effective means of prevention. Still, over 2 years into the pandemic that is an immense burden on health care and economic systems, there seem to be more questions than answers. The character and multitude of immune responses elicited in coronavirus disease 2019 (COVID-19) vary from uncontrollable activation of the inflammatory system, causing extensive tissue damage and consequently leading to severe or even fatal disease, to mild or asymptomatic infections in the majority of patients, resulting in the unpredictability of the current pandemic. The aim of the study was to systematize the available data regarding the immune response to SARS-CoV-2, to provide some clarification among the abundance of the knowledge available. The review contains concise and current information on the most significant immune reactions to COVID-19, including components of both innate and adaptive immunity, with an additional focus on utilizing humoral and cellular responses as effective diagnostic tools. Moreover, the authors discussed the present state of knowledge on SARS-CoV-2 vaccines and their efficacy in cases of immunodeficiency.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Krzysztof Orczyk
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| |
Collapse
|