1
|
El-Ghoul Y, Altuwayjiri AS, Alharbi GA. Synthesis and characterization of new electrospun medical scaffold-based modified cellulose nanofiber and bioactive natural propolis for potential wound dressing applications. RSC Adv 2024; 14:26183-26197. [PMID: 39161434 PMCID: PMC11332191 DOI: 10.1039/d4ra04231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Recently, the design of polymer nanofibers using the electrospinning process has attracted much interest. Particularly the use of natural polymers has promoted many advantages in their biomedical applications. However, the combination of multiple natural polymers remains a great challenge in terms of electrospun production and applied performance. From this perspective, the current investigation highlights the study of the preparation of electrospun nanomaterial scaffolds based on combined natural polymers for improved wound healing performance. First, we have synthesized a crosslinked polymer by reacting microcrystalline cellulose (MC) and chitosan (CS) biopolymer via the intermediate of citric acid as a crosslinking agent. Then a natural propolis biomolecule was incorporated into the polymer network. Different MC/CS blend ratios of 90/10 and 70/30 were then used and various machine parameters were optimized to obtain nanofiber scaffolds with excellent strength and structures. SEM, IR, physicochemical, mechanical, and morpho-logical characterization were then performed. SEM evaluation revealed homogeneous and bead-free nanofibrous structures, with well-defined morphology and a random deposition that could accurately mimic the extracellular matrix of native skin. The calculated average nanofiber diameters for the MC/CS blend ratios at 90/10 and 70/30 were 431.4 and 441.2 nm, respectively. The results showed that when the chitosan amount increased, larger nanofibers with narrow diameter distribution appeared. The prepared nanomaterials had a significant and close water vapor permeability of about 1735.12 and 1698.52 g per m per day for the two blend ratios of 90/10 and 70/30, respectively. The examination of swelling behavior revealed a noteworthy enhancement in hydrophilicity, a necessary attribute for improved healing efficacy. FT-IR analysis confirmed the success and the stability of the chemical crosslinking reaction between the two biopolymers before nanofiber conception. Excellent mechanical properties were acquired, based on the chitosan content. Both developed nanofiber scaffolds exhibited high tensile strength and Young's modulus values. The incorporation of 30% chitosan versus 10% results in an increase in tensile strength of 11% and 14% in Young's modulus. Therefore, we could adjust the different mechanical properties simply by varying the mixing rate of the electrospun polymers. Using epithelial HepG2 cells, viability and kinetic cell adhesion assays were assessed to obtain biological evaluation. No cytotoxicity was observed and good cytocompatibility was confirmed. Functionalized nanofiber biomaterials with different MC/CS ratios substantiated significant bactericidal effectiveness against Gram-positive and Gram-negative bacterial culture strains. The novel functional electrospun wound dressing scaffold demonstrated effective and promising biomedical performance, healing both acute and chronic wounds.
Collapse
Affiliation(s)
- Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
- Textile Engineering Laboratory, University of Monastir Monastir 5019 Tunisia
| | | | - Ghadah A Alharbi
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
| |
Collapse
|
2
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Gholipour Choubar E, Nasirtabrizi MH, Salimi F, Sadeghianmaryan A. Improving bone regeneration with electrospun antibacterial polycaprolactone/collagen/polyvinyl pyrrolidone scaffolds coated with hydroxyapatite and cephalexin delivery capability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:127-145. [PMID: 37837633 DOI: 10.1080/09205063.2023.2270216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Electrospinning is a facile popular method for the creation of nano-micro fibers tissue engineering scaffolds. Here, polycaprolactone (PCL)/collagen (COL): polyvinyl pyrrolidone (PVP) scaffolds (PCL/COL: PVP) were fabricated for bone regeneration. Various concentrations of Cephalexin (CEF) (0.5, 1, 1.5 wt. %) were added to PCL/COL: PVP scaffold to provide an antibacterial scaffold, and different concentrations of hydroxyapatite (HA) (1, 2, 5 wt. %) was electrospray on the surface of the scaffolds. The PCL/COL: PVP scaffold contained 1.5% CEF and coated with 2% HA was introduced as the best sample and in-vitro tests were performed on this scaffold based on the antibacterial and MTT test results. Morphology observations demonstrated a bead-free uniform combined nano-micro fibrous structure. Fourier transform infrared spectroscopy and X-ray diffraction tests confirmed the successful formation of the scaffolds and the wettability, swelling, and biodegradability evaluations of the scaffolds confirmed the hydrophilicity nature of the scaffold with high swelling properties and suitable biodegradation ratio. The scaffolds supported cell adhesion and represented high alkaline phosphatase activity. CEF loading led to antibacterial properties of the designed scaffolds and showed a suitable sustained release rate within 48 h. It seems that the electrospun PCL/COL: PVP scaffold loaded with 1.5% CEF and coated with 2% HA can be useful for bone regeneration applications that need further evaluation in the near future.
Collapse
Affiliation(s)
| | | | - Farshid Salimi
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Ali Sadeghianmaryan
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
5
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
6
|
Ramar G, Bensingh RJ, Bhuvana KP. Enhancing Bioactivity of Nanofibrous Poly(Caprolactone)/45S5 Bioglass Composite Scaffolds by Incorporation of Ag, GO, and ZnO Nanoparticles. ACS Biomater Sci Eng 2023; 9:6186-6197. [PMID: 37774377 DOI: 10.1021/acsbiomaterials.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The present study endeavors toward the investigation on the bioactivity of nanofibrous scaffolds manufactured by the electrospinning process. Nanofibrous composite scaffolds of PCL with 45S5 bioactive glass and metal oxide nanoparticles were developed and characterized. The effects of incorporating silver (Ag), graphene oxide (GO), and zinc oxide (ZnO) nanoparticles into PCL/bioglass nanofibrous scaffolds on its geometry and physiochemical, morphological, mechanical, and biological properties were studied. The incorporation of GO and ZnO alters the fiber diameter, suggesting the methodology for controlling the porosity of the scaffolds. The results of FTIR and XRD confirm the structure of bioglass, Ag, GO and ZnO nanoparticles. The in vitro degradation studies in SBF solution provide evidence for the enhancement in the rate of apatite formation by the inclusion of nanoparticles as compared with PCL/BG scaffolds. The assessment of mechanical properties suggests the tensile strength was increased from 1.61 to 5 MPa in PCL/BG/ZnO system when compared with pristine PCL. The cell viability is also observed to be improved from 72% to 91% and 104% for PCL/BG/GO and PCL/BG/ZnO, respectively. The hemolytic activity studies confirm that all scaffolds are nonhemolytic in nature and PCL/BG/ZnO exhibits the least hemolytic activity of 0.65% among the other composite scaffolds, suggesting the better blood compatibility. The present study evidently shows the fact that incorporation of GO and ZnO nanoparticles with PCL in addition to BG accelerates the bioactivity and improves the mechanical strength of the scaffold.
Collapse
Affiliation(s)
- Gurumoorthi Ramar
- Central Institute of Petrochemicals Engineering and Technology (CIPET), Chennai 600 032, India
| | - R Joseph Bensingh
- Central Institute of Petrochemicals Engineering and Technology (CIPET), Chennai 600 032, India
| | - K P Bhuvana
- Central Institute of Petrochemicals Engineering and Technology (CIPET), Chennai 600 032, India
| |
Collapse
|
7
|
Radulescu DE, Vasile OR, Andronescu E, Ficai A. Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering. Int J Mol Sci 2023; 24:13157. [PMID: 37685968 PMCID: PMC10488011 DOI: 10.3390/ijms241713157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Bone tissue engineering has attracted great interest in the last few years, as the frequency of tissue-damaging or degenerative diseases has increased exponentially. To obtain an ideal treatment solution, researchers have focused on the development of optimum biomaterials to be applied for the enhancement of bioactivity and the regeneration process, which are necessary to support the proper healing process of osseous tissues. In this regard, hydroxyapatite (HA) has been the most widely used material in the biomedical field due to its great biocompatibility and similarity with the native apatite from the human bone. However, HA still presents some deficiencies related to its mechanical properties, which are essential for HA to be applied in load-bearing applications. Bioactivity is another vital property of HA and is necessary to further improve regeneration and antibacterial activity. These drawbacks can be solved by doping the material with trace elements, adapting the properties of the material, and, finally, sustaining bone regeneration without the occurrence of implant failure. Considering these aspects, in this review, we have presented some general information about HA properties, synthesis methods, applications, and the necessity for the addition of doping ions into its structure. Also, we have presented their influence on the properties of HA, as well as the latest applications of doped materials in the biomedical field.
Collapse
Affiliation(s)
- Diana-Elena Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
8
|
Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15112418. [PMID: 37299217 DOI: 10.3390/polym15112418] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Tissue engineering (TE) is an emerging field of study that incorporates the principles of biology, medicine, and engineering for designing biological substitutes to maintain, restore, or improve tissue functions with the goal of avoiding organ transplantation. Amongst the various scaffolding techniques, electrospinning is one of the most widely used techniques to synthesise a nanofibrous scaffold. Electrospinning as a potential tissue engineering scaffolding technique has attracted a great deal of interest and has been widely discussed in many studies. The high surface-to-volume ratio of nanofibres, coupled with their ability to fabricate scaffolds that may mimic extracellular matrices, facilitates cell migration, proliferation, adhesion, and differentiation. These are all very desirable properties for TE applications. However, despite its widespread use and distinct advantages, electrospun scaffolds suffer from two major practical limitations: poor cell penetration and poor load-bearing applications. Furthermore, electrospun scaffolds have low mechanical strength. Several solutions have been offered by various research groups to overcome these limitations. This review provides an overview of the electrospinning techniques used to synthesise nanofibres for TE applications. In addition, we describe current research on nanofibre fabrication and characterisation, including the main limitations of electrospinning and some possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Muhammad Zikri Aiman Zulkifli
- Department of Chemical & Process Engineering, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Darman Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Norazuwana Shaari
- Full Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Kartom Kamarudin
- Full Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
9
|
Kan Y, Bondareva JV, Statnik ES, Koudan EV, Ippolitov EV, Podporin MS, Kovaleva PA, Kapaev RR, Gordeeva AM, Cvjetinovic J, Gorin DA, Evlashin SA, Salimon AI, Senatov FS, Korsunsky AM. Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing. Int J Mol Sci 2023; 24:ijms24076255. [PMID: 37047227 PMCID: PMC10094162 DOI: 10.3390/ijms24076255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yuliya Kan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Correspondence:
| | - Julia V. Bondareva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Eugene S. Statnik
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Elizaveta V. Koudan
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Evgeniy V. Ippolitov
- Department of Microbiology, Virology, Immunology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St. 20, 127473 Moscow, Russia
| | - Mikhail S. Podporin
- Department of Microbiology, Virology, Immunology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St. 20, 127473 Moscow, Russia
| | - Polina A. Kovaleva
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Roman R. Kapaev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexandra M. Gordeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Julijana Cvjetinovic
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Stanislav A. Evlashin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Alexey I. Salimon
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Fedor S. Senatov
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Alexander M. Korsunsky
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Multi-Beam Laboratory for Engineering Microscopy, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
10
|
Śmiga-Matuszowicz M, Włodarczyk J, Skorupa M, Czerwińska-Główka D, Fołta K, Pastusiak M, Adamiec-Organiściok M, Skonieczna M, Turczyn R, Sobota M, Krukiewicz K. Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide- co-Glycolide)/Poly(Isosorbide Sebacate) Fibers. Int J Mol Sci 2023; 24:ijms24021190. [PMID: 36674709 PMCID: PMC9866311 DOI: 10.3390/ijms24021190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.
Collapse
Affiliation(s)
- Monika Śmiga-Matuszowicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowska St. 34, 41-819 Zabrze, Poland
| | - Małgorzata Skorupa
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Kaja Fołta
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowska St. 34, 41-819 Zabrze, Poland
| | - Małgorzata Adamiec-Organiściok
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowska St. 34, 41-819 Zabrze, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-32-237-1773
| |
Collapse
|