1
|
Ikonomidis I, Katsanaki E, Thymis J, Pavlidis G, Lampadaki K, Katogiannis K, Vaiopoulos A, Lazarou V, Kostelli G, Michalopoulou E, Pililis S, Vlachomitros D, Theodoropoulos K, Vink H, Long R, Papadavid E, Lambadiari V. The Effect of 4-Month Treatment with Glycocalyx Dietary Supplement on Endothelial Glycocalyx Integrity and Vascular Function in Patients with Psoriasis. Nutrients 2024; 16:2572. [PMID: 39125451 PMCID: PMC11313920 DOI: 10.3390/nu16152572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Psoriasis predisposes to cardiovascular dysfunction. We investigated whether glycocalyx dietary supplement (GDS), which contains glycosaminoglycans and fucoidan, improves endothelial glycocalyx and arterial stiffness in psoriatic patients. Fifty participants with psoriasis under biological agents were randomly assigned to GDS (n = 25) or placebo (n = 25) for 4 months. We measured at baseline and at follow-up: (a) perfused boundary region (PBR) of the sublingual microvessels (range 4 to 25 μm), a marker of endothelium glycocalyx integrity; (b) carotid-femoral pulse wave velocity (PWV-Complior SP-ALAM) and augmentation index (AIx), markers of arterial stiffness and (c) psoriasis area and severity index (PASI) score. Both groups displayed a similar decrease in PASI at four months (p < 0.05), and no significant differences were found between groups (p > 0.05). Compared to the placebo, participants in the GDS showed a greater percentage reduction in PBR4-25 μm (-9.95% vs. -0.87%), PBR 4-9 μm (-6.50% vs. -0.82%), PBR10-19 μm (-5.12% vs. -1.60%), PBR 20-25 μm (-14.9% vs. -0.31%), PWV (-15.27% vs. -4.04%) and AIx (-35.57% vs. -21.85%) (p < 0.05). In the GDS group, the percentage reduction in PBR 4-25 μm was associated with the corresponding decrease in PWV (r = 0.411, p = 0.015) and AΙx (r = 0.481, p = 0.010) at follow-up. Four-month treatment with GDS improves glycocalyx integrity and arterial stiffness in patients with psoriasis. Clinical trial Identifier: NCT05184699.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Kyriaki Lampadaki
- 2nd Department of Dermatology and Venereology, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, 12461 Athens, Greece; (K.L.); (A.V.); (V.L.); (K.T.); (E.P.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Aristeidis Vaiopoulos
- 2nd Department of Dermatology and Venereology, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, 12461 Athens, Greece; (K.L.); (A.V.); (V.L.); (K.T.); (E.P.)
| | - Vicky Lazarou
- 2nd Department of Dermatology and Venereology, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, 12461 Athens, Greece; (K.L.); (A.V.); (V.L.); (K.T.); (E.P.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Sotirios Pililis
- Research Unit and Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece; (I.I.); (E.K.); (J.T.); (G.P.); (K.K.); (G.K.); (E.M.); (D.V.)
| | - Konstantinos Theodoropoulos
- 2nd Department of Dermatology and Venereology, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, 12461 Athens, Greece; (K.L.); (A.V.); (V.L.); (K.T.); (E.P.)
| | - Hans Vink
- GlycoCalyx Research Institute, Alpine, UT 84004, USA; (H.V.); (R.L.)
| | - Robert Long
- GlycoCalyx Research Institute, Alpine, UT 84004, USA; (H.V.); (R.L.)
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, 12461 Athens, Greece; (K.L.); (A.V.); (V.L.); (K.T.); (E.P.)
| | - Vaia Lambadiari
- Research Unit and Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, National & Kapodistrian University of Athens, 12461 Athens, Greece;
| |
Collapse
|
2
|
van der Velden AIM, IJpelaar DHT, Chandie Shaw PK, Pijl H, Vink H, van der Vlag J, Rabelink TJ, van den Berg BM. Role of dietary interventions on microvascular health in South-Asian Surinamese people with type 2 diabetes in the Netherlands: A randomized controlled trial. Nutr Diabetes 2024; 14:17. [PMID: 38600065 PMCID: PMC11006941 DOI: 10.1038/s41387-024-00275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND/OBJECTIVES We investigated whether dietary interventions, i.e. a fasting mimicking diet (FMD, Prolon®) or glycocalyx mimetic supplementation (EndocalyxTM) could stabilize microvascular function in Surinamese South-Asian patients with type 2 diabetes (SA-T2DM) in the Netherlands, a patient population more prone to develop vascular complications. SUBJECTS/METHODS A randomized, placebo controlled, 3-arm intervention study was conducted in 56 SA-T2DM patients between 18 and 75 years old, for 3 consecutive months, with one additional follow up measurement 3 months after the last intervention. Sublingual microcirculation was assessed with SDF-imaging coupled to the GlycoCheckTM software, detecting red blood cell velocity, capillary density, static and dynamic perfused boundary region (PBR), and the overall microvascular health score (MVHS). Linear mixed models and interaction analysis were used to investigate the effects the interventions had on microvascular function. RESULTS Despite a temporal improvement in BMI and HbA1c after FMD the major treatment effect on microvascular health was worsening for RBC-velocity independent PBRdynamic, especially at follow-up. Glycocalyx supplementation, however, reduced urinary MCP-1 presence and improved both PBRdynamic and MVHSdynamic, which persisted at follow-up. CONCLUSIONS We showed that despite temporal beneficial changes in BMI and HbA1c after FMD, this intervention is not able to preserve microvascular endothelial health in Dutch South-Asian patients with T2DM. In contrast, glycocalyx mimetics preserves the microvascular endothelial health and reduces the inflammatory cytokine MCP-1. CLINICAL STUDY REGISTRATION NCT03889236.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - Daphne H T IJpelaar
- Department of Internal Medicine and Nephrology, Green Heart Hospital, Gouda, The Netherlands
| | - Prataap K Chandie Shaw
- Department of Internal Medicine and Nephrology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Hanno Pijl
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), LUMC, Leiden, The Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- MicroVascular Health Solutions LLC, Alpine, Utah, USA
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands.
| |
Collapse
|
3
|
Wu L, Zhang X, Zhao J, Yang M, Yang J, Qiu P. The therapeutic effects of marine sulfated polysaccharides on diabetic nephropathy. Int J Biol Macromol 2024; 261:129269. [PMID: 38211917 DOI: 10.1016/j.ijbiomac.2024.129269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Marine sulfated polysaccharide (MSP) is a natural high molecular polysaccharide containing sulfate groups, which widely exists in various marine organisms. The sources determine structural variabilities of MSPs which have high security and wide biological activities, such as anticoagulation, antitumor, antivirus, immune regulation, regulation of glucose and lipid metabolism, antioxidant, etc. Due to the structural similarities between MSP and endogenous heparan sulfate, a majority of studies have shown that MSP can be used to treat diabetic nephropathy (DN) in vivo and in vitro. In this paper, we reviewed the anti-DN activities, the dominant mechanisms and structure-activity relationship of MSPs in order to provide the overall scene of MSPs as a modality of treating DN.
Collapse
Affiliation(s)
- Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xiaonan Zhang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jun Zhao
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Menglin Yang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
4
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|