1
|
Domingo E, Martínez-González B, Somovilla P, García-Crespo C, Soria ME, de Ávila AI, Gadea I, Perales C. A general and biomedical perspective of viral quasispecies. RNA (NEW YORK, N.Y.) 2025; 31:429-443. [PMID: 39689947 DOI: 10.1261/rna.080280.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds, or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve, and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article, we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
2
|
Jones LR. Intra-host variability of SARS-CoV-2: Patterns, causes and impact on COVID-19. Virology 2025; 603:110366. [PMID: 39724740 DOI: 10.1016/j.virol.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Intra-host viral variability is related to pathogenicity, persistence, drug resistance, and the emergence of new clades. This work reviews the large amount of data on SARS-CoV-2 intra-host variability accumulated to date, addressing known and potential implications in COVID-19 and the emergence of VOCs and lineage-defining mutations. Topics covered include the distribution of intra-host polymorphisms across the genome, the corresponding mutational signatures, their patterns of emergence and extinction throughout infection, and the processes governing their abundance, frequency, and type (synonymous, nonsynonymous, indels, nonsense). Besides, evidence is reviewed that the virus can replicate and mutate in isolation at different anatomical compartments, which may imply that what we have learned from respiratory samples could be part of a broader picture.
Collapse
Affiliation(s)
- Leandro R Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1083ACA Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Virología y Genética Molecular (LVGM), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Belgrano 160, Trelew, CP, 9100, Argentina.
| |
Collapse
|
3
|
Messali S, Giovanetti M, Rondina A, Bertelli M, Duheric M, Caccuri F, Ciccozzi M, Caruso A. Tracking cryptic SARS-CoV-2 hospital outbreak through quasispecies analysis. Virol J 2024; 21:331. [PMID: 39707507 DOI: 10.1186/s12985-024-02609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Since the beginning of the pandemic, contact tracing has been one of the most relevant issues to understand SARS-CoV-2 transmission dynamics and, in this context, the analysis of quasispecies may turn out to be a useful tool for outbreak investigations. Analysis of the intra-host single nucleotide variants (iSNVs) found in the nsp2, ORF3, and ORF7 genes of SARS-CoV-2 was conducted in order to correctly identify virus transmission chain among patients hospitalized in Brescia Civic Hospital. METHODS During the period between August and October 2023, 13 nasopharyngeal specimens, collected from patients admitted to Brescia Civic Hospital, were tested for SARS-CoV-2 positivity and molecularly characterized. Firstly, a phylogenetic analysis was performed to evaluate if they were epidemiologically linked and, then, the Beta-binomial method was used to estimate the transmission bottleneck size (Nb) and quantify the number of viral particles transmitted from one individual (donor) to another (recipient). RESULTS According to the molecular characterization of specimens, we identified two transmission clusters in the cardiology unit: the first cluster concerned patients tested positive for the HV.1/EG.5.1.6 lineage, while the second cluster concerned patients tested positive for the FL.10.1 lineage. Moreover, evaluating the bottleneck size, we were able to solve SARS-CoV-2 transmission chain among infected patients. CONCLUSION Our method shows that it is possible to conduct a tracing study using a genomic approach based on iSNVs analysis.
Collapse
Affiliation(s)
- Serena Messali
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandro Rondina
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy
| | - Marta Bertelli
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy
| | - Melissa Duheric
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy
| | - Massimo Ciccozzi
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy
- Clinical Pathology and Microbiology Laboratory, Unit of Medical Statistics and Molecular Epidemiology, University Hospital Campus Biomedico, Rome, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy.
| |
Collapse
|
4
|
Colson P, Fantini J, Delerce J, Bader W, Levasseur A, Pontarotti P, Devaux C, Raoult D. "Outlaw" mutations in quasispecies of SARS-CoV-2 inhibit replication. Emerg Microbes Infect 2024; 13:2368211. [PMID: 38916498 PMCID: PMC11207925 DOI: 10.1080/22221751.2024.2368211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
The evolution of SARS-CoV-2, the agent of COVID-19, has been remarkable for its high mutation potential, leading to the appearance of variants. Some mutations have never appeared in the published genomes, which represent consensus, or bona fide genomes. Here we tested the hypothesis that mutations that did not appear in consensus genomes were, in fact, as frequent as the mutations that appeared during the various epidemic episodes, but were not expressed because lethal. To identify these mutations, we analysed the genomes of 90 nasopharyngeal samples and the quasispecies determined by next-generation sequencing. Mutations observed in the quasispecies and not in the consensus genomes were considered to be lethal, what we called "outlaw" mutations. Among these mutations, we analysed the 21 most frequent. Eight of these "outlaws" were in the RNA polymerase and we were able to use a structural biology model and molecular dynamics simulations to demonstrate the functional incapacity of these mutated RNA polymerases. Three other mutations affected the spike, a major protein involved in the pathogenesis of COVID-19. Overall, by analysing the SARS-CoV-2 quasispecies obtained during sequencing, this method made it possible to identify "outlaws," showing areas that could potentially become the target of treatments.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR UA 16, Aix-Marseille Université, Marseille, France
| | | | - Wahiba Bader
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS), Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Marseille, France
| |
Collapse
|
5
|
Scutari R, Fox V, Fini V, Granaglia A, Vittucci AC, Smarrazzo A, Lancella L, Calo' Carducci F, Romani L, Cursi L, Bernaschi P, Russo C, Campana A, Bernardi S, Villani A, Perno CF, Alteri C. Molecular characterization of SARS-CoV-2 Omicron clade and clinical presentation in children. Sci Rep 2024; 14:5325. [PMID: 38438451 PMCID: PMC10912656 DOI: 10.1038/s41598-024-55599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Since its emergence, SARS-CoV-2 Omicron clade has shown a marked degree of variability and different clinical presentation compared with previous clades. Here we demonstrate that at least four Omicron lineages circulated in children since December 2021, and studied until November 2022: BA.1 (33.6%), BA.2 (40.6%), BA.5 (23.7%) and BQ.1 (2.1%). At least 70% of infections concerned children under 1 year, most of them being infected with BA.2 lineages (n = 201, 75.6%). Looking at SARS-CoV-2 genetic variability, 69 SNPs were found to be significantly associated in pairs, (phi < - 0.3 or > 0.3 and p-value < 0.001). 16 SNPs were involved in 4 distinct clusters (bootstrap > 0.75). One of these clusters (A23040G, A27259C, T23617G, T23620G) was also positively associated with moderate/severe COVID-19 presentation (AOR [95% CI] 2.49 [1.26-4.89] p-value: 0.008) together with comorbidities (AOR [95% CI] 2.67 [1.36-5.24] p-value: 0.004). Overall, these results highlight the extensive SARS-CoV-2 Omicron circulation in children, mostly aged < 1 year, and provide insights on viral diversification even considering low-abundant SNPs, finally suggesting the potential contribution of viral diversification in affecting disease severity.
Collapse
Affiliation(s)
- Rossana Scutari
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Major School in Microbiology and Virology, Campus Bio-Medico University, Rome, Italy
| | - Valeria Fox
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vanessa Fini
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annarita Granaglia
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Chiara Vittucci
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Smarrazzo
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Lancella
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Lorenza Romani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cursi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Bernaschi
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Bernardi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Villani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Claudia Alteri
- Multimodal Laboratory Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Colson P, Delerce J, Pontarotti P, Devaux C, La Scola B, Fantini J, Raoult D. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. J Med Virol 2024; 96:e29462. [PMID: 38363015 DOI: 10.1002/jmv.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | | | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
| |
Collapse
|
7
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|