1
|
Gao L, Chen X, Jiang Z, Zhu J, Wang Q. Respiratory Flora Intervention: A New Strategy for the Prevention and Treatment of Occupationally Related Respiratory Allergy in Healthcare Workers. Microorganisms 2024; 12:2653. [DOI: 10.3390/microorganisms12122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Occupational allergic respiratory disease in healthcare workers due to occupational exposure has received widespread attention. At the same time, evidence of altered respiratory flora associated with the development of allergy has been found in relevant epidemiologic studies. It is of concern that the composition of nasopharyngeal flora in healthcare workers differs significantly from that of non-healthcare workers due to occupational factors, with a particularly high prevalence of carriage of pathogenic and drug-resistant bacteria. Recent studies have found that interventions with upper respiratory tract probiotics can significantly reduce the incidence of respiratory allergies and infections. We searched PubMed and other databases to describe the burden of allergic respiratory disease and altered respiratory flora in healthcare workers in this narrative review, and we summarize the mechanisms and current state of clinical research on the use of flora interventions to ameliorate respiratory allergy, with the aim of providing a new direction for protecting the respiratory health of healthcare workers.
Collapse
Affiliation(s)
- Linglin Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xi Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ziyi Jiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jie Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Tang Y, Zhao Y, Guan Y, Xue L, Guo J, Zhao T, Guan Y, Tong S, Che C. Silencing TRIM8 alleviates allergic asthma and suppressing Th2 differentiation through inhibiting NF-κB/NLRP3 signaling pathway. Immunol Lett 2024; 270:106923. [PMID: 39260527 DOI: 10.1016/j.imlet.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Allergic asthma is a primary type of asthma and characterized by T helper 2 (Th2) cells -mediated inflammation. Tripartite motif containing 8 (TRIM8) protein is involved in immunoreaction and inflammatory response in many diseases. However, its role in allergic asthma remains unclear. Medical databank showed that TRIM8 was increased in lung of ovalbumin (OVA)-challenged mice. This study aimed to elucidate the effects of TRIM8 on allergic asthma and Th2 development. METHODS Asthma were induced by OVA challenge in mice, and the adenovirus vector loaded with TRIM8 knockdown sequence was delivered into asthma mice by nasal inhalation. The percentage of Th2 cells in lung was assessed by flow cytometric analysis, and the contents of Th2 cytokines (interleukin (IL)-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) were assessed with ELISA. In vitro Th2 induction was performed in CD4+ cells from mouse spleen, the expression of Th2 molecules (IL-4, IL-5 and GATA binding protein 3 (GATA3)) were measured by real-time PCR. In addition, the nuclear factor-kappa B (NF-κB)/nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) signaling was determined. RESULTS TRIM8 was highly expressed in the lung tissues of asthmatic mice and Th2-induced CD4+ cells. OVA challenge-induced Th2 development and Th2 cytokine secretion were restrained by silencing of TRIM8 in vivo. Similarly, the Th2 differentiation in vitro was also suppressed by TRIM8 knockdown. TRIM8 inhibited the NF-κB/NLRP3 activity by blocking transforming growth factor-beta-activated kinase 1 (TAK1), and the effects of TRIM8 were abrogated by overexpression of NLRP3. CONCLUSIONS Silencing TRIM8 relieved the asthmatic injury in mice and excessive Th2 development via inhibiting the NF-κB/NLRP3 pathway. It is indicated that TRIM8 may contribute to the airway inflammation in allergic asthma via activating the NF-κB/NLRP3 signaling pathway. The current study provided a novel potential target for allergic asthma treatment.
Collapse
Affiliation(s)
- Yao Tang
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China; Department of Internal Medicine, Harbin Medical University, Harbin, PR China; NHC Key Laboratory of Cell Transplantation, Harbin, PR China
| | - Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuanyuan Guan
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Longge Xue
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jingsong Guo
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tingrui Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuqing Guan
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Songlin Tong
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Chunli Che
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China; Department of Internal Medicine, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
3
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, VI: human sebum and the cutaneous microbiome in allergy and in lipid homeostasis. FRONTIERS IN ALLERGY 2024; 5:1478279. [PMID: 39640432 PMCID: PMC11617560 DOI: 10.3389/falgy.2024.1478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are causative agents of IgE-mediated conditions. This report further develops The Hypothesis, providing rationale for the childhood predilection of allergy. In short, Malassezia, a fungus native to human skin and utterly dependent on sebaceous lipids, prevents allergy by deterring acarians. Because sebum output is limited before puberty, children are more prone to allergy than are adults. Competition for sebaceous lipids by Staphylococcus aureus influences not only Malassezia number-and, consequently, allergic predisposition-but also lipid homeostasis. The latter, in turn, contributes to dyslipidemia and associated conditions, e.g., the metabolic syndrome.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Pang J, Shi Y, Peng D, Cui L, Xu Y, Wang W, Hu Y, Yang Y, Wang J, Qin X, Zhang Y, Meng H, Wang D, Bai G, Yuan H, Liu J, Lv Z, Li Y, Cui Y, Wang W, Huang K, Corrigan CJ, Wang W, Chen Y, Ying S. Bacterial antigens and asthma: a comparative study of common respiratory pathogenic bacteria. J Asthma 2024; 61:1089-1102. [PMID: 38478043 DOI: 10.1080/02770903.2024.2330063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.
Collapse
Affiliation(s)
- Jie Pang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yifan Shi
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dan Peng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Hao Meng
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Bai
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Hur GY. Staphylococcal enterotoxin B sensitization in eosinophilic asthma. Korean J Intern Med 2024; 39:543-544. [PMID: 38986493 PMCID: PMC11236809 DOI: 10.3904/kjim.2024.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Agbasi JC, Ezugwu AL, Omeka ME, Ucheana IA, Aralu CC, Abugu HO, Egbueri JC. More about making profits or providing safe drinking water? A state-of-the-art review on sachet water contamination in Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:255-297. [PMID: 38439577 DOI: 10.1080/26896583.2024.2319009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Public health concerns on surface and groundwater contamination worldwide have increased. Sachet water contamination has also raised serious concerns across many developing countries. While previous studies attempted to address this issue, this review takes a different approach by utilizing a comprehensive analysis of physicochemical parameters, heavy metals, and microbial loads tested in sachet water across Nigeria's six geopolitical zones, within the period of 2020-2023. In this review study, over 50 articles were carefully analyzed. Collected data unveiled regional variations in the quality of sachet water across Nigeria. Noteworthy concerns revolve around levels of pH, total hardness, magnesium, calcium, nickel, iron, lead, mercury, arsenic, and cadmium. Fecal contamination was also identified as a significant issue, with the prevalence of several pathogens like Escherichia coli, Salmonella typhi, Enterobacter cloacae, Staphylococcus aureus, and Enterococcus faecalis. The manufacturing, delivery, storage, and final sale of sachet water, as well as poor environmental hygiene, were identified as potential contamination sources. The intake of contaminated sachet water exposes the citizens to waterborne and carcinogenic diseases. While the sachet water industry keeps growing and making profits, it is apparent that improvement calls made by previous studies, regarding the quality of water produced, have not been paid serious attention.
Collapse
Affiliation(s)
- Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| |
Collapse
|
7
|
Potaczek DP. Editorial of Special Issue "Molecular Mechanisms of Allergy and Asthma 2.0". Int J Mol Sci 2023; 24:11310. [PMID: 37511070 PMCID: PMC10379451 DOI: 10.3390/ijms241411310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Similarly to the previous Special Issue entitled "Molecular Mechanisms of Allergy and Asthma" [...].
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, 35032 Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Universities of Gießen and Marburg Lung Center (UGMLC), 35392 Gießen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, 35394 Gießen, Germany
| |
Collapse
|