1
|
Jevtovic V, Golubović L, Alshammari B, Alshammari MR, Rajeh SY, Alreshidi MA, Alshammari OAO, Rakić A, Dimić D. Crystal Structure, Theoretical Analysis, and Protein/DNA Binding Activity of Iron(III) Complex Containing Differently Protonated Pyridoxal- S-Methyl-Isothiosemicarbazone Ligands. Int J Mol Sci 2024; 25:7058. [PMID: 39000166 PMCID: PMC11241004 DOI: 10.3390/ijms25137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Pyridoxal-S-methyl-isothiosemicarbazone (PLITSC) is a member of an important group of ligands characterized by different complexation modes to various transition metals. In this contribution, a new complex containing two differently protonated PLITSC ligands ([Fe(PLITSC-H)(PLITSC)]SO4)∙2.5H2O was obtained. The crystal structure was solved by the X-ray analysis and used further for the optimization at B3LYP/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(Fe) level of theory. Changes in the interaction strength and bond distance due to protonation were observed upon examination by the Quantum Theory of Atoms in Molecules. The protein binding affinity of [Fe(PLITSC-H)(PLITSC)]SO4 towards transport proteins (Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA)) was investigated by the spectrofluorimetric titration and molecular docking. The interactions with the active pocket containing fluorescent amino acids were examined in detail, which explained the fluorescence quenching. The interactions between complex and DNA were followed by the ethidium-bromide displacement titration and molecular docking. The binding along the minor groove was the dominant process involving complex in the proximity of DNA.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Luka Golubović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Badriah Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | | | - Sahar Y Rajeh
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Maha Awjan Alreshidi
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Odeh A O Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Ludwig G, Ranđelović I, Dimić D, Komazec T, Maksimović-Ivanić D, Mijatović S, Rüffer T, Kaluđerović GN. (Pentamethylcyclopentadienyl)chloridoiridium(III) Complex Bearing Bidentate Ph 2PCH 2CH 2SPh-κ P,κ S Ligand. Biomolecules 2024; 14:420. [PMID: 38672437 PMCID: PMC11048224 DOI: 10.3390/biom14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κP,κS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the "piano stool" type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells.
Collapse
Affiliation(s)
- Gerd Ludwig
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany;
| | - Ivan Ranđelović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Teodora Komazec
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, D-06217 Merseburg, Germany
| |
Collapse
|
3
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Małecki JG. Exploring the cytotoxicity of dinuclear Ru(II) p-cymene complexes appended N, N'-bis(4-substituted benzoyl)hydrazines: insights into the mechanism of apoptotic cell death. Dalton Trans 2024; 53:5167-5179. [PMID: 38380977 DOI: 10.1039/d3dt04234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Jaryal R, Khan SA. Liquid-assisted mechanochemical synthesis, crystallographic, theoretical and molecular docking study on HIV instasome of novel copper complexes: (µ-acetato)-bis(2,2'-bipyridine)-copper and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide. Biometals 2023; 36:975-996. [PMID: 37010713 DOI: 10.1007/s10534-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
In the present work the two new Cu(II) complexes, (µ-acetato)-bis(2,2'-bipyridine)-copper [Cu(bpy)2(CH3CO2)] and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide [Cu(2-methylimid)4Br]Br have been synthesized by liquid assisted mechanochemical method. The [Cu(bpy)2(CH3CO2)] complex (1) and [Cu(2-methylimid)4Br]Br complex (2) characterised by IR and UV-visible spectroscopy and the structure are confirmed by XRD diffraction studies. Complex (1) crystallized in the Monoclinic with the space group of C2/c where a = 24.312(5) Å, b = 8.5892(18) Å, c = 14.559(3) Å, α = 90°, β = 106.177(7)° and γ = 90° and Complex (2) crystallized in the Tetragonal with the space group of P4nc, a = 9.9259(2) Å, b = 9.9259(2) Å, c = 10.9357(2) Å, α = 90°, β = 90° and γ = 90°. The complex (1) has distorted octahedral geometry where the acetate ligand showed bidentate bridging with the central metal ion and complex (2) has slightly deformed square pyramidal geometry. The HOMO-LUMO energy gap value and the low chemical potential showed that the complex (2) is stable and difficult to polarize compare to complex (1). The molecular docking study of complexes with the HIV instasome nucleoprotein showed the binding energy values - 7.1 and - 5.3 kcal/mol for complex (1) and complex (2) respectively. The negative binding energy values showed the complexes have affinity to bind with HIV instasome nucleoproteins. The in-silico pharmacokinetic study of the complex (1) and complex (2) showed non AMES toxicity, non-carcinogens and low honey Bee toxicity but weakly inhibit Human Ether-a-go-go-related gene.
Collapse
Affiliation(s)
- Ruchika Jaryal
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India.
| | - Shamshad Ahmad Khan
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India
| |
Collapse
|
5
|
Jevtovic V, Alhar MSO, Milenković D, Marković Z, Dimitrić Marković J, Dimić D. Synthesis, Structural Characterization, Cytotoxicity, and Protein/DNA Binding Properties of Pyridoxylidene-Aminoguanidine-Metal (Fe, Co, Zn, Cu) Complexes. Int J Mol Sci 2023; 24:14745. [PMID: 37834192 PMCID: PMC10573062 DOI: 10.3390/ijms241914745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pyridoxylidene-aminoguanidine (PLAG) and its transition metal complexes are biologically active compounds with interesting properties. In this contribution, three new metal-PLAG complexes, Zn(PLAG)(SO4)(H2O)].∙H2O (Zn-PLAG), [Co(PLAG)2]SO4∙2H2O (Co-PLAG), and [Fe(PLAG)2]SO4∙2H2O) (Fe-PLAG), were synthetized and characterized by the X-ray crystallography. The intermolecular interactions governing the stability of crystal structure were compared to those of Cu(PLAG)(NCS)2 (Cu-PLAG) within Hirshfeld surface analysis. The structures were optimized at B3LYP/6-31+G(d,p)(H,C,N,O,S)/LanL2DZ (Fe,Co,Zn,Cu), and stability was assessed through Natural Bond Orbital Theory and Quantum Theory of Atoms in Molecules. Special emphasis was put on investigating the ligand's stability and reactivity. The binding of these compounds to Bovine and Human serum albumin was investigated by spectrofluorometric titration. The importance of complex geometry and various ligands for protein binding was shown. These results were complemented by the molecular docking study to elucidate the most important interactions. The thermodynamic parameters of the binding process were determined. The binding to DNA, as one of the main pathways in the cell death cycle, was analyzed by molecular docking. The cytotoxicity was determined towards HCT116, A375, MCF-7, and A2780 cell lines. The most active compound was Cu-PLAG due to the presence of PLAG and two thiocyanate ligands.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | | | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | | | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
R S, Mahalakshmi S, Kumaran S, Kadaikunnan S, Abbas G, Muthu S. Structural, electronic, intermolecular interaction, reactivity, vibrational spectroscopy, charge transfer, Hirshfeld surface analysis, pharmacological and hydropathy plot on 5-Bromo nicotinic acid - Antiviral study (Hepatitis A, B, and C). Heliyon 2023; 9:e19965. [PMID: 37809934 PMCID: PMC10559560 DOI: 10.1016/j.heliyon.2023.e19965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The therapeutic properties of 5-Bromonicotinatic acid (5BNA) were studied for antiviral illnesses like Hepatitis A, Hepatitis B and Hepatitis C and the influence of electron-donating and electron-withdrawing properties of functional groups on the nicotinic acid was evaluated and represented in this study using the DFT approach. The molecular parameters were determined for both gases as well as for various solvent phases. The reactive areas in the compound are examined utilising Fukui analysis. The molecular interactions are accomplished by recognising the different types of bonding found in the compound using the AIM, ELF, LOL, RDG and IRI. Solvation investigations were demonstrated to have an influence on molecular orbital energy, ESP, UV-Vis and NLO analyses. Electron-hole, NBO and Hirshfeld investigations are used to investigate the transfer of charges and interactions inside the molecule. The method of vibrational spectroscopy (IR and Raman) is used to differentiate and identify the various types of vibrations displayed by the compound. The hydropathy plots for the proteins 2A4O, 6CWD and 2OC8 associated with Hepatitis A, Hepatitis B and Hepatitis C illustrate the disquiet and attraction of the amino acids towards the water.
Collapse
Affiliation(s)
- Sravanthi R
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
- University of Madras, Chennai, 600005, Tamil Nadu, India
| | - S. Mahalakshmi
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
| | - S. Kumaran
- Department of ECE, Saveetha Engineering College, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ghulam Abbas
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr 15, 76131, Karlsruhe, Germany
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamil Nadu, India
| |
Collapse
|
7
|
Jevtovic V, Alshamari AK, Milenković D, Dimitrić Marković J, Marković Z, Dimić D. The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int J Mol Sci 2023; 24:11910. [PMID: 37569285 PMCID: PMC10419307 DOI: 10.3390/ijms241511910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Abd El-Lateef HM, Khalaf MM, Kandeel M, Amer AA, Abdelhamid AA, Abdou A. Designing, characterization, biological, DFT, and molecular docking analysis for new FeAZD, NiAZD, and CuAZD complexes incorporating 1-(2-hydroxyphenylazo)- 2-naphthol (H 2AZD). Comput Biol Chem 2023; 105:107908. [PMID: 37352589 DOI: 10.1016/j.compbiolchem.2023.107908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Herien, three new Fe(III) (FeAZD), Ni(II) (NiAZD), and Cu(II) (CuAZD) complexes were synthesized and characterized using various physicochemical and spectroscopic approaches. The H2AZD ligand acted as a bi-basic bi-dentate NO ligand in a 1:1 molar ratio. The results revealed that the FeAZD and CuAZD complexes had octahedral geometry, while the NiAZD had a tetrahedral geometry. The optimized geometry, HOMO and LUMO analysis of the ligand and its metal complexes was determined via Density functional theory (DFT) using the B3LYP with 6-311 G(d,p), and LanL2DZ level of theory. The FeAZD, NiAZD and CuAZD had lower energy gap, 7.40, 7.93 and 7.06 eV, respectively, than the free ligand (9.58 eV), which proposed that CuAZD was more active one. The free ligand and its metal complexes were in vitro investigated for their antibacterial and antifungal activity. The results illustrated that the metal complexes had higher antibacterial and antifungal activity than the free ligand. More specifically, the CuAZD demonstrated good antibacterial activity against E. coli, P. aeruginosa, S. aureus, B. cereus, and A. flavus, T. rubrum, and C. albicans, with activity indexes of 72.22%, 65.01%, 77.78%, and 72.22%, 63.16%, 59.09%, and 61.90%, respectively. Also, the metal complexes showed lower MIC (6.25-3.125 ppm) compared to the free ligand (about 50 ppm). Finally, molecular docking was utilized to investigate the ability of the free ligand and its metal complexes to inhibit the growth of E. coli (PDB ID: 5iq9). The results showed that the CuAZD had the highest binding affinity to the receptor, with a more negative docking score of - 7.05 Kcal/mol, and lower inhibition constant (Ki) of 6.90 µM. That is indicating that it may be the most effective at inhibiting the growth of E. coli (PDB ID: 5iq9).
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982 Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Amer A Amer
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Antar A Abdelhamid
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt; Chemistey Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Aly Abdou
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
9
|
Ma H, Bao Y, Niu S, Wang S, Li Y, He H, Zhang N, Fang W. Structure Optimization of 12β- O-γ-Glutamyl Oleanolic Acid Derivatives Resulting in Potent FXR Antagonist/Modulator for NASH Therapy. Pharmaceuticals (Basel) 2023; 16:ph16050758. [PMID: 37242541 DOI: 10.3390/ph16050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The farnesoid X receptor (FXR) plays a crucial role in regulating the metabolism of bile acids, lipids, and sugars. Consequently, it is implicated in the treatment of various diseases, including cholestasis, diabetes, hyperlipidemia, and cancer. The advancement of novel FXR modulators holds immense importance, especially in managing metabolic disorders. In this study, a series of oleanolic acid (OA) derivatives bearing 12β-O-(γ-glutamyl) groups were designed and synthesized. Using a yeast one-hybrid assay, we established a preliminary structure-activity relationship (SAR) and identified the most potent compound, 10b, which selectively antagonizes FXR over other nuclear receptors. Compound 10b can differentially modulate the downstream genes of FXR, including with the upregulation of the CYP7A1 gene. In vivo testing revealed that 10b (100 mg·Kg-1) not only effectively inhibits lipid accumulation in the liver but also prevents liver fibrosis in both BDL rats and HFD mice. Molecular modeling indicated that the branched substitution of 10b extends into the H11-H12 region of FXR-LBD, possibly accounting for its CYP7A1 upregulation, which is different from a known OA 12β-alkonate. These findings suggest that 12-glutamyl OA derivative 10b represents a promising candidate for the treatment of nonalcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China
| | - Yunyang Bao
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuaishuai Niu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China
| | - Shaorong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China
| | - Yiming Li
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongwei He
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weishuo Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China
| |
Collapse
|
10
|
Steffy AD, Dhas DA, Joe IH, Gunasekaran B, Vinitha G. EXPERIMENTAL AND THEORETICAL INVESTIGATION ON PIPERAZINE-1,4-DIIUM BIS (2,5-DICHLOROPHENOXYACETATE) SINGLE CRYSTAL: A POTENTIAL CANDIDATE FOR NONLINEAR OPTICAL APPLICATIONS. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
Abuelizz HA, Bakheit AH, Marzouk M, El-Senousy WM, Abdellatif MM, Mostafa GAE, Al-Salahi R. Evaluation of Some Benzo[g]Quinazoline Derivatives as Antiviral Agents against Human Rotavirus Wa Strain: Biological Screening and Docking Study. Curr Issues Mol Biol 2023; 45:2409-2421. [PMID: 36975526 PMCID: PMC10047800 DOI: 10.3390/cimb45030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Globally, rotavirus (RV) is the most common cause of acute gastroenteritis in infants and toddlers; however, there are currently no agents available that are tailored to treat rotavirus infection in particular. Improved and widespread immunization programs are being implemented worldwide to reduce rotavirus morbidity and mortality. Despite certain immunizations, there are no licensed antivirals that can attack rotavirus in hosts. Benzoquinazolines, chemical components synthesized in our laboratory, were developed as antiviral agents, and showed good activity against herpes simplex, coxsackievirus B4 and hepatitis A and C. In this research project, an in vitro investigation of the effectiveness of benzoquinazoline derivatives 1–16 against human rotavirus Wa strains was carried out. All compounds exhibited antiviral activity, however compounds 1–3, 9 and 16 showed the greatest activity (reduction percentages ranged from 50 to 66%). In-silico molecular docking of highly active compounds, which were selected after studying the biological activity of all investigated of benzo[g]quinazolines compounds, was implemented into the protein’s putative binding site to establish an optimal orientation for binding. As a result, compounds 1, 3, 9, and 16 are promising anti-rotavirus Wa strains that lead with Outer Capsid protein VP4 inhibition.
Collapse
Affiliation(s)
- Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Tanning Materials and Leather Technology Department, Organic Chemicals Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Waled M. El-Senousy
- Food Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Mohamed M. Abdellatif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Tokyo 192-0397, Japan
| | - Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Ghous F, Shukla S, Singh R, Parveen S, Banerjee M, Bishnoi A. Synthesis, Crystal Structure, Computational Investigation, Molecular Docking Analysis and Anti-lung Cancer Activity of Novel (Z)-3-amino-2-(cyclohexylidenehydrazono)thiazolidin-4-one. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Synthesis, spectroscopic, and molecular interaction study of lead(II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|