1
|
Bertran L, Rusu EC, Guirro M, Aguilar C, Auguet T, Richart C. Circulating proteomic profiles in women with morbid obesity compared to normal-weight women. J Proteomics 2025; 310:105317. [PMID: 39307454 DOI: 10.1016/j.jprot.2024.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
In this study, we aimed to evaluate circulating proteomic levels in women with morbid obesity (MO) compared to normal-weight (NW) women. Moreover, we have compared the proteomic profile between women with metabolically healthy (MH) MO and those with type 2 diabetes mellitus (T2DM). The study included 66 normal-weight (NW) women and 129 women with MO (54 MH and 75 with T2DM). Blood samples were processed for proteomics, involving protein extraction, quantification, digestion with peptide labelling and Nano (liquid chromatography (LC)-(Orbitrap) coupled to mass/mass spectrometry (MS/MS) analysis. Statistical analyses were performed. We identified 257 proteins. Women with MO showed significantly increased levels of 35 proteins and decreased levels of 45 proteins compared to NW women. Enrichment analysis of metabolic pathways revealed significant findings. Women with MO have an altered proteomic profile compared to normal-weight women, involving proteins significantly related to chylomicron assembly, complement cascade, clotting pathways and the insulin growth factor system. Regarding women with MO and T2DM compared to MHMO women, the proteomic profile shows alterations in mostly the same pathways associated with obesity. These findings confirmed in previous reports can help us better understand the pathophysiology of obesity and associated diseases. SIGNIFICANCE: Women with morbid obesity (MO) exhibit substantial proteomic alterations compared to normal-weight (NW) women, involving 80 proteins. These alterations are linked to significant metabolic pathways, including chylomicron assembly, complement cascade, clotting pathways and the insulin growth factor system. Additionally, women with MO and type 2 diabetes mellitus (T2DM) compared to metabolically healthy MO women share similar proteomic changes than the first comparison. These findings enhance our understanding of the pathophysiology of obesity and associated diseases, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laia Bertran
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| | - Elena Cristina Rusu
- GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Maria Guirro
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain.
| | - Carmen Aguilar
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Teresa Auguet
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| |
Collapse
|
2
|
Lambert C, Morales-Sánchez P, García AV, Villa-Fernández E, Latorre J, García-Villarino M, Turienzo Santos EO, Suárez-Gutierrez L, Uría RR, Navarro SS, Ares-Blanco J, Pujante P, Sanz Álvarez LM, Menéndez-Torre E, Moreno Gijón M, Fernandez-Real JM, Delgado E. Exploring differential miRNA expression profiles in muscular and visceral adipose tissue of patients with severe obesity. Int J Obes (Lond) 2024:10.1038/s41366-024-01683-4. [PMID: 39562687 DOI: 10.1038/s41366-024-01683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND This study aims to investigate the differential miRNA expression profile between the visceral white adipose tissue and the skeletal muscle of people with obesity undergoing bariatric surgery. METHODS Skeletal muscle and visceral adipose tissue samples of 10 controls and 38 people with obesity (50% also with type 2 diabetes) undergoing bariatric surgery were collected. miRNA expression profiles were analyzed using Next-Generation Sequencing and subsequently validated using RT-PCR. RESULTS Approximately 69% of miRNAs showed similar expression in both tissues, however, 55 miRNAs were preferentially expressed in visceral adipose tissue and 53 in skeletal muscle. miR-122b-5p was uniquely identified in skeletal muscle, while miR-1-3p and miR-206 were upregulated in skeletal muscle. Conversely, miR-224-5p and miR-335-3p exhibited upregulation in visceral adipose tissue. Notably, distinctions related to the presence of type 2 diabetes were observed solely in the expression of miR-1-3p and miR-206 in visceral adipose tissue. CONCLUSIONS This is the first study unveiling distinct miRNA expression profiles in paired samples of visceral adipose tissue and skeletal muscle in humans. The identification of obesity-specific miRNAs in these tissues opens up promising avenues for research into potential biomarkers for obesity diagnosis and treatment.
Collapse
Affiliation(s)
- Carmen Lambert
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Paula Morales-Sánchez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Victoria García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Elsa Villa-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Jèssica Latorre
- Department of Diabetes Endocrinology and Nutrition (UDEN) Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- Centre for Biomedical Network Research on Obesity and Nutrition Physiopathology (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Miguel García-Villarino
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Medicine Department, University of Oviedo, Oviedo, Asturias, Spain
| | - Estrella Olga Turienzo Santos
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Lorena Suárez-Gutierrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Raquel Rodríguez Uría
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Sandra Sanz Navarro
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Jessica Ares-Blanco
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Medicine Department, University of Oviedo, Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Pedro Pujante
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Lourdes María Sanz Álvarez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - Edelmiro Menéndez-Torre
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Medicine Department, University of Oviedo, Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - María Moreno Gijón
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| | - José Manuel Fernandez-Real
- Department of Diabetes Endocrinology and Nutrition (UDEN) Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- Centre for Biomedical Network Research on Obesity and Nutrition Physiopathology (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Elías Delgado
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Medicine Department, University of Oviedo, Oviedo, Asturias, Spain
- Asturias Central University Hospital, Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Fang H, Li X, Lv J, Huo X, Guo M, Liu X, Li C, Chen Z, Du X. Adipocytokines and Inflammation in Patients and a Gerbil Model: Implications for Obesity-Related and Nonobese Diabetes. J Diabetes Res 2024; 2024:9683512. [PMID: 39474247 PMCID: PMC11521580 DOI: 10.1155/2024/9683512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/21/2024] [Indexed: 12/27/2024] Open
Abstract
Background: Obesity is a predisposing risk factor for type 2 diabetes mellitus (T2DM). Actually, not only obese/overweight but also nonobese/lean individuals may be prone to T2DM. This study is aimed at identifying the contribution of adipose tissue to the development of nonobese diabetes (NOD) and obese diabetes (OD). Methods: Serum samples from the nonobese nondiabetes (NOND, n = 47, age = 46.8 ± 8.4, BMI ≤ 23.9 kg/m2) controls, NOD (n = 48, age = 50.7 ± 6.5, BMI ≤ 23.9 kg/m2) and OD (n = 65, age = 49.8 ± 10.2, BMI ≥ 28 kg/m2) patients were utilized to measure the expression of metabolic indicators, adipocytokines, inflammatory factors. Different adipose depots from offspring with corresponding blood glucose and obesity levels of a spontaneously diabetic gerbil line with various degrees of diabetic penetrance and body weights were examined for adipocytokines and inflammation factors detected by ELISA and western blot. Adipose tissue volume and fat cell size of the gerbils were evaluated by magnetic resonance imaging and immunohistochemistry, respectively. Results: The study yielded four key findings. Firstly, in comparison to the NOD group, the OD group exhibited more severe insulin resistance (IR) and metabolic dysfunction in both patients and gerbils, attributed to higher visceral adipose tissue mass and larger fat cell sizes. Secondly, in gerbils, gonadal fat deposition was linked to obesity development, whereas kidney fat deposition correlated with obesity and diabetes occurrence. Thirdly, in both patients and gerbils, the interplay between adiponectin and leptin levels in serum may significantly influence the development of obesity and diabetes. Lastly, heightened expression of MCP3 in gerbils' kidney adipose tissue may serve as a pivotal factor in initiating obesity-associated diabetes. Conclusions: Our study, which may be considered a pilot investigation, suggests that the interaction of adipocytokines and inflammation factors in different adipose depots could play diverse roles in the development of diabetes or obesity.
Collapse
Affiliation(s)
- Hongjuan Fang
- Department of Endocrinology, Aviation General Hospital, Beijing 100012, China
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiaohong Li
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- School of Basic Medical Science, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jianyi Lv
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Zhenwen Chen
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Arderiu G, Bejar MT, Civit-Urgell A, Peña E, Badimon L. Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor. Basic Res Cardiol 2024; 119:291-307. [PMID: 38430261 DOI: 10.1007/s00395-024-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain.
- Ciber CV, Instituto Carlos III, Madrid, Spain.
| | - Maria Teresa Bejar
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Anna Civit-Urgell
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | - Esther Peña
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Badimon L, Arderiu G, Vilahur G, Padro T, Cordero A, Mendieta G. Perivascular and epicardial adipose tissue. Vascul Pharmacol 2024; 154:107254. [PMID: 38072220 DOI: 10.1016/j.vph.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Lina Badimon
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain.
| | - Gemma Arderiu
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Teresa Padro
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Alberto Cordero
- Ciber CV, Instituto Carlos III, Madrid, Spain; Cardiology Department, Hospital IMED Elche, Alicante, Spain
| | - Guiomar Mendieta
- Cardiology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
6
|
Benincasa G, Suades R, Padró T, Badimon L, Napoli C. Bioinformatic platforms for clinical stratification of natural history of atherosclerotic cardiovascular diseases. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:758-769. [PMID: 37562936 DOI: 10.1093/ehjcvp/pvad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Although bioinformatic methods gained a lot of attention in the latest years, their use in real-world studies for primary and secondary prevention of atherosclerotic cardiovascular diseases (ASCVD) is still lacking. Bioinformatic resources have been applied to thousands of individuals from the Framingham Heart Study as well as health care-associated biobanks such as the UK Biobank, the Million Veteran Program, and the CARDIoGRAMplusC4D Consortium and randomized controlled trials (i.e. ODYSSEY, FOURIER, ASPREE, and PREDIMED). These studies contributed to the development of polygenic risk scores (PRS), which emerged as novel potent genetic-oriented tools, able to calculate the individual risk of ASCVD and to predict the individual response to therapies such as statins and proprotein convertase subtilisin/kexin type 9 inhibitor. ASCVD are the first cause of death around the world including coronary heart disease (CHD), peripheral artery disease, and stroke. To achieve the goal of precision medicine and personalized therapy, advanced bioinformatic platforms are set to link clinically useful indices to heterogeneous molecular data, mainly epigenomics, transcriptomics, metabolomics, and proteomics. The DIANA study found that differential methylation of ABCA1, TCF7, PDGFA, and PRKCZ significantly discriminated patients with acute coronary syndrome from healthy subjects and their expression levels positively associated with CK-MB serum concentrations. The ARIC Study revealed several plasma proteins, acting or not in lipid metabolism, with a potential role in determining the different pleiotropic effects of statins in each subject. The implementation of molecular high-throughput studies and bioinformatic techniques into traditional cardiovascular risk prediction scores is emerging as a more accurate practice to stratify patients earlier in life and to favour timely and tailored risk reduction strategies. Of note, radiogenomics aims to combine imaging features extracted for instance by coronary computed tomography angiography and molecular biomarkers to create CHD diagnostic algorithms useful to characterize atherosclerotic lesions and myocardial abnormalities. The current view is that such platforms could be of clinical value for prevention, risk stratification, and treatment of ASCVD.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', 80138 Naples, Italy
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', 80138 Naples, Italy
| |
Collapse
|
7
|
Hruska P, Kucera J, Kuruczova D, Buzga M, Pekar M, Holeczy P, Potesil D, Zdrahal Z, Bienertova-Vasku J. Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers. Am J Physiol Endocrinol Metab 2023; 325:E562-E580. [PMID: 37792298 PMCID: PMC10864023 DOI: 10.1152/ajpendo.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
In this study, we aimed to comprehensively characterize the proteomic landscapes of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in patients with severe obesity, to establish their associations with clinical characteristics, and to identify potential serum protein biomarkers indicative of tissue-specific alterations or metabolic states. We conducted a cross-sectional analysis of 32 patients with severe obesity (16 males and 16 females) of Central European descent who underwent bariatric surgery. Clinical parameters and body composition were assessed using dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance, with 15 patients diagnosed with type 2 diabetes (T2D) and 17 with hypertension. Paired SAT and VAT samples, along with serum samples, were subjected to state-of-the-art proteomics liquid chromatography-mass spectrometry (LC-MS). Our analysis identified 7,284 proteins across SAT and VAT, with 1,249 differentially expressed proteins between the tissues and 1,206 proteins identified in serum. Correlation analyses between differential protein expression and clinical traits suggest a significant role of SAT in the pathogenesis of obesity and related metabolic complications. Specifically, the SAT proteomic profile revealed marked alterations in metabolic pathways and processes contributing to tissue fibrosis and inflammation. Although we do not establish a definitive causal relationship, it appears that VAT might respond to SAT metabolic dysfunction by potentially enhancing mitochondrial activity and expanding its capacity. However, when this adaptive response is exceeded, it could possibly contribute to insulin resistance (IR) and in some cases, it may be associated with the progression to T2D. Our findings provide critical insights into the molecular foundations of SAT and VAT in obesity and may inform the development of targeted therapeutic strategies.NEW & NOTEWORTHY This study provides insights into distinct proteomic profiles of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and serum in patients with severe obesity and their associations with clinical traits and body composition. It underscores SAT's crucial role in obesity development and related complications, such as insulin resistance (IR) and type 2 diabetes (T2D). Our findings emphasize the importance of understanding the SAT and VAT balance in energy homeostasis, proteostasis, and the potential role of SAT capacity in the development of metabolic disorders.
Collapse
Affiliation(s)
- Pavel Hruska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Daniela Kuruczova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Buzga
- Department of Laboratory Medicine, University hospital Ostrava, Ostrava, Czech Republic
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Matej Pekar
- Vascular and Miniinvasive Surgery Center, Hospital AGEL Trinec-Podlesi, Trinec, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavol Holeczy
- Department of Surgery, Vitkovice Hospital, Ostrava, Czech Republic
- Department of Surgical Disciplines, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Zhang QH, Chen LH, An Q, Pi P, Dong YF, Zhao Y, Wang N, Fang X, Pu RW, Song QW, Lin LJ, Liu JH, Liu AL. Quantification of the renal sinus fat and exploration of its relationship with ectopic fat deposition in normal subjects using MRI fat fraction mapping. Front Endocrinol (Lausanne) 2023; 14:1187781. [PMID: 37621645 PMCID: PMC10446762 DOI: 10.3389/fendo.2023.1187781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 08/26/2023] Open
Abstract
Purpose To determine the renal sinus fat (RSF) volume and fat fraction (FF) in normal Chinese subjects using MRI fat fraction mapping and to explore their associations with age, gender, body mass index (BMI) and ectopic fat deposition. Methods A total of 126 subjects were included in the analysis. RSF volume and FF, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) area, and hepatic and pancreatic FFs were measured for each subject. The comparisons in gender were determined using two-tailed t-tests or the nonparametric Mann-Whitney U-test for normally or non-normally distributed data for continuous variables and the chi-square test for categorical variables. Comparisons of RFS volume and FF between right and left kidneys were determined using paired sample t-tests. Multivariable logistic models were performed to confirm whether RSF differences between men and women are independent of VAT or SAT area. When parameters were normally distributed, the Pearson correlation coefficient was used; otherwise, the Spearman correlation coefficient was applied. Results The RSF volumes (cm3) of both kidneys in men (26.86 ± 8.81 for right and 31.62 ± 10.32 for left kidneys) were significantly bigger than those of women (21.47 ± 6.90 for right and 26.03 ± 8.55 for left kidneys) (P < 0.05). The RSF FFs (%) of both kidneys in men (28.33 ± 6.73 for right and 31.21 ± 6.29 for left kidneys) were significantly higher than those of the women (23.82 ± 7.74 for right and 27.92 ± 8.15 for left kidneys) (P < 0.05). The RSF differences between men and women are independent of SAT area and dependent of VAT area (except for right RSF volume). In addition, the RSF volumes and FFs in both kidneys in the overall subjects show significant correlations with age, BMI, VAT area, hepatic fat fraction and pancreatic fat fraction (P < 0.05). However, the patterns of these correlations varied by gender. The RSF volume and FF of left kidney were significantly larger than those of the right kidney (P < 0.05). Conclusion The association between renal sinus fat and ectopic fat deposition explored in this study may help establish a consensus on the normal values of RSF volume and FF for the Chinese population. This will facilitate the identification of clinicopathological changes and aid in the investigation of whether RSF volume and FF can serve as early biomarkers for metabolic diseases and renal dysfunction in future studies.
Collapse
Affiliation(s)
- Qin-He Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li-Hua Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi An
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng Pi
- Department of Medical Imaging, Dalian Medical University, Dalian, China
| | - Yi-Fan Dong
- Department of Medical Imaging, Dalian Medical University, Dalian, China
| | - Ying Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Fang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ren-Wang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing-Wei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang-Jie Lin
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Jing-Hong Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ai-Lian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|