1
|
Hou G, Chen Y, Lei H, Lu S, Cheng L. Nanomaterials-Induced PANoptosis: A Promising Anti-Tumor Strategy. Angew Chem Int Ed Engl 2024:e202419649. [PMID: 39560000 DOI: 10.1002/anie.202419649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Malignant tumors pose a significant threat to global public health. Promoting programmed cell death in cancer cells has become a critical strategy for cancer treatment. PANoptosis, a newly discovered form of regulated cell death, integrates key molecular components of pyroptosis, apoptosis, and necroptosis, activating these three death pathways simultaneously to achieve synergistic multi-mechanistic killing. PANoptosis significantly inhibits cancer cell growth and resistance and activates strong anti-tumor immune response, making tumor-specific induction of PANoptosis a potential cancer therapeutic strategy. Currently, cancer treatment research related to PANoptosis is focused mainly on the development of small molecules and cytokines. However, these approaches still face limitations in terms of metabolic stability and tumor specificity. The unique physicochemical properties and biological activities of nanomaterials hold significant promise for optimizing PANoptosis induction strategies. This review summarizes the concept and mechanisms of PANoptosis, highlights the latest applications of nanoagents in PANoptosis-based anti-cancer therapy, and discusses the challenges and future directions for clinical translation. It is hoped that this review will inspire further exploration and development of PANoptosis-based cancer treatments, providing new perspectives for researchers in the field.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Wu J, Wang H, Gao P, Ouyang S. Pyroptosis: Induction and inhibition strategies for immunotherapy of diseases. Acta Pharm Sin B 2024; 14:4195-4227. [PMID: 39525577 PMCID: PMC11544194 DOI: 10.1016/j.apsb.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a central process for organismal health. Pyroptosis, namely pyroptotic cell death, is recognized as a critical type that disrupts membrane and triggers pro-inflammatory cytokine secretion via gasdermins, providing a robust form of cytolysis. Meanwhile, along with the thorough research, a great deal of evidence has demonstrated the dual effects of pyroptosis in host defense and inflammatory diseases. More importantly, the recent identification of abundant gasdermin-like proteins in bacteria and fungi suggests an ancient origin of pyroptosis-based regulated cell death in the life evolution. In this review, we bring a general overview of pyroptosis pathways focusing on gasdermin structural biology, regulatory mechanisms, and recent progress in induction and inhibition strategies for disease treatment. We look forward to providing an insightful perspective for readers to comprehend the frame and challenges of the pyroptosis field, and to accelerating its clinical application.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
3
|
Hara MA, Ramadan M, Abdelhameid MK, Taher ES, Mohamed KO. Pyroptosis and chemical classification of pyroptotic agents. Mol Divers 2024:10.1007/s11030-024-10987-6. [PMID: 39316325 DOI: 10.1007/s11030-024-10987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.
Collapse
Affiliation(s)
- Mohammed A Hara
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt.
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University (Arish Branch), ElArich, Egypt
| |
Collapse
|
4
|
Fang Q, Xu Y, Tan X, Wu X, Li S, Yuan J, Chen X, Huang Q, Fu K, Xiao S. The Role and Therapeutic Potential of Pyroptosis in Colorectal Cancer: A Review. Biomolecules 2024; 14:874. [PMID: 39062587 PMCID: PMC11274949 DOI: 10.3390/biom14070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The unlimited proliferation of tumor cells is one of the key features resulting in the malignant development and progression of CRC. Consequently, understanding the potential proliferation and growth molecular mechanisms and developing effective therapeutic strategies have become key in CRC treatment. Pyroptosis is an emerging type of regulated cell death (RCD) that has a significant role in cells proliferation and growth. For the last few years, numerous studies have indicated a close correlation between pyroptosis and the occurrence, progression, and treatment of many malignancies, including CRC. The development of effective therapeutic strategies to inhibit tumor growth and proliferation has become a key area in CRC treatment. Thus, this review mainly summarized the different pyroptosis pathways and mechanisms, the anti-tumor (tumor suppressor) and protective roles of pyroptosis in CRC, and the clinical and prognostic value of pyroptosis in CRC, which may contribute to exploring new therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Qing Fang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yunhua Xu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangwen Tan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaofeng Wu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Jinyi Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Xiguang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Qiulin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuai Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| |
Collapse
|
5
|
Qi X, Liu J, Wang L, Gu P, Song S, Shu P. Kaempferol-induced mitochondrial damage promotes NF-κB-NLRP3-caspase-1 signaling axis-mediated pyroptosis in gastric cancer cells. Heliyon 2024; 10:e28672. [PMID: 38596072 PMCID: PMC11002587 DOI: 10.1016/j.heliyon.2024.e28672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
GC is a gastrointestinal tumor with high morbidity and mortality. Owing to the high rate of postoperative recurrence associated with GC, the effectiveness of radiotherapy and chemotherapy may be compromised by the occurrence of severe undesirable side effects. In light of these circumstances, KP, a flavonoid abundantly present in diverse herbal and fruit sources, emerges as a promising therapeutic agent with inherent anti-tumor properties. This study endeavors to demonstrate the therapeutic potential of KP in the context of GC while unraveling the intricate underlying mechanisms. Notably, our investigations unveil that KP stimulation effectively promotes the activation of NLRP3 inflammatory vesicles within AGS cells by engaging the NF-κB signaling pathway. Consequently, the signal cascade triggers the cleavage of Caspase-1, culminating in the liberation of IL-18. Furthermore, we ascertain that KP facilitate AGS cell pyroptosis by inducing mitochondrial damage. Collectively, our findings showcase KP as a compelling candidate for the treatment of GC-related diseases, heralding new possibilities for future therapeutic interventions.
Collapse
Affiliation(s)
- Xiafei Qi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Liuxiang Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Peixing Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| |
Collapse
|
6
|
Gu Y, Xu Y, Wang P, Zhao Y, Wan C. Research progress on molecular mechanism of pyroptosis caused by Helicobacter pylori in gastric cancer. Ann Med Surg (Lond) 2024; 86:2016-2022. [PMID: 38576917 PMCID: PMC10990316 DOI: 10.1097/ms9.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy worldwide. Helicobacter pylori (H. pylori), a Gram-negative spiral bacterium, has the ability to colonize and persist in the human gastric mucosa. Persistent H. pylori infection has been identified as a major risk factor for ~80% of GC cases. The interplay between H. pylori pathogenicity, genetic background, and environmental factors collectively contribute to GC transformation. Eradicating H. pylori infection is beneficial in reducing the recurrence of gastric cancer and residual cancer. However, the underlying molecular mechanisms involved in GC remain incompletely understood. Additionally, H. pylori reshapes the immune microenvironment within the stomach which may compromise immunotherapy efficacy in infected individuals. Clinical eradication of H. pylori infection still faces numerous challenges. In this review, the authors summarize recent research progress on elucidating the molecular mechanisms underlying H. pylori infection in GC development. Notably, CagA protein-a carcinogenic virulence factor predominantly expressed by Asian strains of H. pylori-induces inflammation and excessive ROS production within gastric mucosa cells. Dysregulation of multiple pyroptosis signalling pathways can lead to malignant transformation of these cells. MiRNA-1290 plays a crucial role in GC initiation and progression while serving as an indicator for disease progression dynamics. Pyroptosis exhibits dual roles both promoting carcinogenesis and inhibiting tumour growth; thus it holds potential clinical applications for drug-resistant GC treatment strategies. Furthermore, pyroptosis may play a regulatory role within the immune system during gastric cancer development. Lastly, the authors provide an overview on current concepts regarding pyroptosis as well as insights into miRNA-1290's pathogenicity and clinical value within immune mechanisms associated with GC, aiming to serve as reference material for researchers.
Collapse
Affiliation(s)
- Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University
| | - Yeqiong Xu
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu
| | - Yu Zhao
- Department of Clinical Medicine, Qixiu Campus Medical College of Nantong University, Nantong, China
| | - Chuandan Wan
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| |
Collapse
|
7
|
Chen W, He Y, Zhou G, Chen X, Ye Y, Zhang G, Liu H. Multiomics characterization of pyroptosis in the tumor microenvironment and therapeutic relevance in metastatic melanoma. BMC Med 2024; 22:24. [PMID: 38229080 PMCID: PMC10792919 DOI: 10.1186/s12916-023-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pyroptosis, mediated by gasdermins with the release of multiple inflammatory cytokines, has emerged as playing an important role in targeted therapy and immunotherapy due to its effectiveness at inhibiting tumor growth. Melanoma is one of the most commonly used models for immunotherapy development, though an inadequate immune response can occur. Moreover, the development of pyroptosis-related therapy and combinations with other therapeutic strategies is limited due to insufficient understanding of the role of pyroptosis in the context of different tumor immune microenvironments (TMEs). METHODS Here, we present a computational model (pyroptosis-related gene score, PScore) to assess the pyroptosis status. We applied PScore to 1388 melanoma samples in our in-house cohort and eight other publicly available independent cohorts and then calculated its prognostic power of and potential as a predictive marker of immunotherapy efficacy. Furthermore, we performed association analysis for PScore and the characteristics of the TME by using bulk, single-cell, and spatial transcriptomics and assessed the association of PScore with mutation status, which contributes to targeted therapy. RESULTS Pyroptosis-related genes (PRGs) showed distinct expression patterns and prognostic predictive ability in melanoma. Most PRGs were associated with better survival in metastatic melanoma. Our PScore model based on genes associated with prognosis exhibits robust performance in survival prediction in multiple metastatic melanoma cohorts. We also found PScore to be associated with BRAF mutation and correlate positively with multiple molecular signatures, such as KRAS signaling and the IFN gamma response pathway. Based on our data, melanoma with an immune-enriched TME had a higher PScore than melanoma with an immune-depleted or fibrotic TME. Additionally, monocytes had the highest PScore and malignant cells and fibroblasts the lowest PScore based on single-cell and spatial transcriptome analyses. Finally, a higher PScore was associated with better therapeutic efficacy of immune checkpoint blockade, suggesting the potential of pyroptosis to serve as a marker of immunotherapy response. CONCLUSIONS Collectively, our findings indicate that pyroptosis is a prognostic factor and is associated with the immune response in metastatic melanoma, as based on multiomics data. Our results provide a theoretical basis for drug combination and reveal potential immunotherapy response markers.
Collapse
Affiliation(s)
- Wenqiong Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yi He
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Guowei Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guanxiong Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Hong Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China.
- Big Data Institute, Central South University, Changsha, 410083, China.
| |
Collapse
|
8
|
Li L, Liao A. Application of pyroptosis score in the treatment and prognosis evaluation of gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1882-1889. [PMID: 38448382 PMCID: PMC10930744 DOI: 10.11817/j.issn.1672-7347.2023.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 03/08/2024]
Abstract
Pyroptosis is a kind of proinflammatory programmed cell death mediated by inflammasome. It affects the occurrence and development of gastric cancer through different ways, showing dual effects. On the one hand, inflammasome-mediated inflammatory response is highly likely to participate in the formation and development of early tumors; on the other hand, drugs can inhibit the deterioration process of tumor proliferation, invasion and metastasis through activating the pathways of inflammasome and pyroptosis. Recently, many agents based on pyroptosis have been found to inhibit gastric cancer by promoting the secondary pyroptosis pathway, regulating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and inhibiting caspase-1. The establishment of cell pyrodeath models can predict the prognosis of gastric cancer patients. Most of the models show that gastric cancer patients with high pyroptosis level have better prognosis and longer overall survival. Pyroptosis scores can also be used to predict the response of gastric cancer patients to immunotherapy and to screen potential anti-gastric cancer drugs. Therefore, in-depth understanding of the potential mechanism of pyroptosis affecting the progression of gastric cancer and the role of pyroptosis score in the treatment and prognosis assessment of gastric cancer will be helpful to find a new and effective method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Luyun Li
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| | - Aijun Liao
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|
9
|
Deng H, Chen Y, An R, Wang J. Pyroptosis-related lncRNA prognostic signatures for cutaneous melanoma and tumor microenvironment status. Epigenomics 2023; 15:657-675. [PMID: 37577979 DOI: 10.2217/epi-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aims: To explore whether the expression of pyroptosis-related lncRNAs makes a difference in the prognosis and antitumor immunity of cutaneous melanoma (CM) patients. Methods: A series of analyses were conducted to establish a prognostic risk model and validate its accuracy. Immune-related analyses were performed to further assess the associations among immune status, tumor microenvironment and the prognostic risk model. Results: Eight pyroptosis-related lncRNAs relevant to prognosis were ascertained and applied to establish the prognostic risk model. The low-risk group had a higher overall survival rate. Conclusion: The established prognostic risk model presents better prediction ability for the prognosis of CM patients and provides new possible therapeutic targets for CM.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxuan Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|