1
|
Braconi L, Sosic A, Crocetti L. Recent breakthroughs in synthetic small molecules targeting SARS-CoV-2 M pro from 2022 to 2024. Bioorg Med Chem 2025; 128:118247. [PMID: 40413978 DOI: 10.1016/j.bmc.2025.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/07/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Among the identified targets for developing anti-coronavirus therapies, SARS-CoV-2 Mpro stands out as one of the most promising due to its crucial role in viral replication and its low mutability across various coronaviruses, making it a potential broad-spectrum target. Currently, although the approved drugs targeting Mpro are peptidomimetic inhibitors with an adequate efficacy, they exhibit relatively poor pharmacokinetic properties commonly associated with peptide-based compounds. On the contrary, using non-peptidic small-molecules Mpro inhibitors can offer many advantages, including reduced off-target toxicity, improved metabolic stability and drug-like properties more appropriate for oral administration. This topic has sparked interest in the scientific community, leading to the publication of numerous studies in recent years. In this review, we summarize the most recent progress over the past two years in the identification and development of synthetic small-molecule inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Laura Braconi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Tuttle JB, Allais C, Allerton CMN, Anderson AS, Arcari JT, Aschenbrenner LM, Avery M, Bellenger J, Berritt S, Boras B, Boscoe BP, Buzon LM, Cardin RD, Carlo AA, Coffman KJ, Dantonio A, Di L, Eng H, Farley KA, Ferre RA, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lachapelle EA, Lanyon LF, Lee J, Lee J, Lian Y, Liu W, Martínez-Alsina LA, Mason SW, Noell S, Novak J, Obach RS, Ogilvie K, O'Neil SV, Ostner G, Owen DR, Patel NC, Pettersson M, Singh RS, Rai DK, Reese MR, Sakata S, Sammons MF, Sathish JG, Sharma R, Steppan CM, Stewart A, Updyke L, Verhoest PR, Wei L, Wright SW, Yang E, Yang Q, Zhu Y. Discovery of Nirmatrelvir (PF-07321332): A Potent, Orally Active Inhibitor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) Main Protease. J Med Chem 2025; 68:7003-7030. [PMID: 40019854 DOI: 10.1021/acs.jmedchem.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
In early 2020, severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infections leading to COVID-19 disease reached a global level leading to the World Health Organization (WHO) declaration of a pandemic. Scientists around the globe rapidly responded to try and discover novel therapeutics and repurpose extant drugs to treat the disease. This work describes the preclinical discovery efforts that led to the invention of PF-07321332 (nirmatrelvir, 14), a potent and orally active inhibitor of the SARS CoV-2 main protease (Mpro) enzyme. At the outset we focused on modifying PF-00835231 (1) discovered in 2004 as a potent inhibitor of the SARS CoV-1 Mpro with poor systemic exposure. Our effort was focused on modifying 1 with the goal of engineering in oral bioavailability by design, while maintaining cellular potency and low metabolic clearance. Modifications of 1 ultimately led to the invention of nirmatrelvir 14, the Mpro inhibitor component in PAXLOVID.
Collapse
Affiliation(s)
- Jamison B Tuttle
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Christophe Allais
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | | | | | - Joel T Arcari
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | | | - Melissa Avery
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Justin Bellenger
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Britton Boras
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Brian P Boscoe
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Leanne M Buzon
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Rhonda D Cardin
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Anthony A Carlo
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Karen J Coffman
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Alyssa Dantonio
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Li Di
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Heather Eng
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Kathleen A Farley
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Rose Ann Ferre
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Ketan S Gajiwala
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Scott A Gibson
- Institute of Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | | | - Brett L Hurst
- Institute of Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Eugene P Kadar
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Erik A Lachapelle
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Lorraine F Lanyon
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jisun Lee
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jack Lee
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Yajing Lian
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Wei Liu
- Pfizer Research & Development, La Jolla, California 92121, United States
| | | | - Stephen W Mason
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Stephen Noell
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Jonathan Novak
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - R Scott Obach
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Kevin Ogilvie
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Steven V O'Neil
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Gregory Ostner
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Dafydd R Owen
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Nandini C Patel
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Martin Pettersson
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Singh
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Devendra K Rai
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Sylvie Sakata
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Matthew F Sammons
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Jean G Sathish
- Pfizer Research & Development, Pearl River, New York 10965, United States
| | - Raman Sharma
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Claire M Steppan
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Al Stewart
- Pfizer Research & Development, La Jolla, California 92121, United States
| | - Lawrence Updyke
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Patrick R Verhoest
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Liuqing Wei
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Stephen W Wright
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Eddie Yang
- Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Qingyi Yang
- Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Yuao Zhu
- Pfizer Research & Development, Pearl River, New York 10965, United States
| |
Collapse
|
3
|
Ferreira GC, Manzato VDM, Okamoto DN, Fernandes LR, Santos DM, Costa GCA, Silva FAA, Torquato RJS, Palmisano G, Juliano MA, Tanaka AS. Sunflower Trypsin Monocyclic Inhibitor Selected for the Main Protease of SARS-CoV-2 by Phage Display. Biol Pharm Bull 2024; 47:1813-1822. [PMID: 39522974 DOI: 10.1248/bpb.b24-00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Main protease (Mpro), also known as 3-chymotrypsin-like protease (3CLpro), is a nonstructural protein (NSP5) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the cleavage of virus polyproteins during viral replication at 11 sites, which generates 12 functional proteins. Mpro is a cysteine protease that presents specificity for the amino acid residue glutamine (Gln) at the P1 position of the substrate. Due to its essential role in processing the viral polyprotein for viral particle formation (assembly), Mpro inhibition has become an important tool to control coronavirus disease 2019 (COVID-19), since Mpro inhibitors act as antivirals. In this work, we proposed to identify specific inhibitors of the Mpro of SARS-CoV-2 using a monocyclic peptide (sunflower trypsin inhibitor (SFTI)) phage display library. Initially, we expressed, purified and activated recombinant Mpro. The screening of the mutant SFTI phage display library using recombinant Mpro as a receptor resulted in the five most frequent SFTI mutant sequences. Synthetized mutant SFTIs did not inhibit Mpro protease using the fluorogenic substrate. However, the mutant SFTI 4 efficiently decreased the cleavage of recombinant human prothrombin as a substrate by Mpro, as confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Additionally, SFTI 4 presented a dissociation constant (KD) of 21.66 ± 6.66 µM for Mpro by surface plasmon resonance. Finally, 0.1 µM SFTI 4 reduced VERO cell infection by SARS-CoV-2 wt after 24 and 48 h. In conclusion, we successfully screened a monocyclic peptide library using phage display for the Mpro of SARS-CoV-2, suggesting that this methodology can be useful in identifying new inhibitors of viral enzymes.
Collapse
Affiliation(s)
| | | | - Debora Noma Okamoto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of São Paulo
| | | | | | | | | | | | - Giuseppe Palmisano
- Institute of Biomedical Sciences, University of São Paulo
- School of Natural Sciences, Macquarie University
| | | | - Aparecida Sadae Tanaka
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo
- National Institute of Science and Technology for Molecular Entomology (INCT-EM), Institute of Medical Biochemistry-Federal University of Rio de Janeiro
| |
Collapse
|
4
|
Rocho FR, Snipas SJ, Shamim A, Rut W, Drag M, Montanari CA, Salvesen GS. Differential specificity of SARS-CoV-2 main protease variants on peptide versus protein-based substrates. FEBS J 2024; 291:61-69. [PMID: 37843490 DOI: 10.1111/febs.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The SARS-CoV-2 main protease (Mpro ) holds significant importance as a biological target in combating coronaviruses due to its importance in virus replication. Considering the emergence of novel SARS-CoV-2 variants and the mutations observed in the Mpro sequence, we hypothesized that these mutations may have a potential impact on the protease's specificity. To test this, we expressed Mpro corresponding to the original strain and variants Beta1, Beta2, and Omicron and analyzed their activity on protein-based and peptide substrates. Although we observed differential activity on the protein-based substrate, there was very little difference when analyzed on the peptide substrate. We conclude that mutations on the Mpro sequence, despite having a minor effect on a peptide substrate cleavage, did not change the catalytic site environment enough to build resistance to inhibition. Therefore, we propose that inhibitors initially designed for the Mpro of the original strain will be effective in all the variants. Thus, Mpro is likely to continue to be a target of therapeutic interest as mutations in its sequence are rare and, as we show here, have a minor effect on the protease's recognition of peptide-based molecules.
Collapse
Affiliation(s)
- Fernanda R Rocho
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Medicinal and Biological Chemistry Group of the Department of Chemistry and Molecular Physics, University of São Paulo, Brazil
| | - Scott J Snipas
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anwar Shamim
- Medicinal and Biological Chemistry Group of the Department of Chemistry and Molecular Physics, University of São Paulo, Brazil
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group of the Department of Chemistry and Molecular Physics, University of São Paulo, Brazil
| | - Guy S Salvesen
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Song S, Kim Y, Kwak K, Lee H, Park H, Kim YB, Lee HJ, Kang LW. The N-terminal peptide of the main protease of SARS-CoV-2, targeting dimer interface, inhibits its proteolytic activity. BMB Rep 2023; 56:606-611. [PMID: 37817441 PMCID: PMC10689081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 cleaves 11 sites of iral polypeptide chains and generates essential non-structural proteins for viral replication. Mpro is an important drug target against COVID-19. In this study, we developed a real-time fluorometric turn-on assay system to evaluate Mpro proteolytic activity for a substrate peptide between NSP4 and NSP5. It produced reproducible and reliable results suitable for HTS inhibitor assays. Thus far, most inhibitors against Mpro target the active site for substrate binding. Mpro exists as a dimer, which is essential for its activity. We investigated the potential of the Mpro dimer interface to act as a drug target. The dimer interface is formed of domain II and domain III of each protomer, in which N-terminal ten amino acids of the domain I are bound in the middle as a sandwich. The N-terminal part provides approximately 39% of the dimer interface between two protomers. In the real-time fluorometric turn-on assay system, peptides of the N-terminal ten amino acids, N10, can inhibit the Mpro activity. The dimer interface could be a prospective drug target against Mpro. The N-terminal sequence can help develop a potential inhibitor. [BMB Reports 2023; 56(11): 606-611].
Collapse
Affiliation(s)
- Sunyu Song
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yeseul Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|