1
|
Makled MN, Makled NN, Abdel-Rahman AM, Sharawy MH. Inhibition of p75 NTR/p53 axis by ambrisentan suppresses apoptosis and oxidative stress-mediated renal damage in a cisplatin AKI model. Chem Biol Interact 2025; 408:111408. [PMID: 39892498 DOI: 10.1016/j.cbi.2025.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Cisplatin (CP) is a potent antineoplastic agent that triggers nephrotoxicity as a major adverse effect which can cause treatment interruptions and limitations to its clinical use. Nephrotoxicity associated with CP involves inflammation, oxidative stress, and apoptosis in kidney tubules. The objective of this work was to assess the effect of the blockade of endothelin-1 (ET-1) receptor with ambrisentan on altered renal function induced by CP. Swiss albino mice were assigned into control, CP, CP/Amb-5, and CP/Amb-10 groups. Ambrisentan improved kidney function (serum creatinine and BUN) and histopathological changes in comparison to CP-treated group. Ambrisentan significantly reduced protein expression of p75NTR and protein level of JNK influencing renal apoptosis as evidenced by reducing p53, caspase-3, and Bax levels and elevating Bcl-2 level (p < 0.05 vs CP group). Moreover, vasodilatory effect of ambrisentan was indicated by significant increase in level of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) (p < 0.05 vs CP group). Ambrisentan also significantly restored oxidative balance in renal tissues as evidenced by reduced malondialdehyde and increased total antioxidant capacity and superoxide dismutase activity, in addition to decreasing nitric oxide levels (p < 0.05 vs CP group). This protective effect of ambrisentan might be mediated through the downregulation of death receptor, P75NTR that in turn restores renal blood flow and oxidative balance and regulates p53, VEGF/eNOS, NF-κB, and Bcl-2/Bax/caspase-3 signaling.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noran N Makled
- Department of Urology, Faculty of Medicine, Damietta University, Damietta, Egypt; Department of Urology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M Abdel-Rahman
- Department of Nephrology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Bhadange R, Gaikwad AB. Repurposing the familiar: Future treatment options against chronic kidney disease. J Pharm Pharmacol 2025:rgaf002. [PMID: 39832316 DOI: 10.1093/jpp/rgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects. Therefore, identifying new therapeutic targets or improving existing treatments for CKD is crucial. Drug repurposing is a promising strategy in the drug discovery process that involves screening existing approved drugs for new therapeutic applications. KEY FINDINGS This review discusses the pharmacological mechanisms and clinical evidence that support the efficacy of these repurposed drugs. Various drugs classes such as inodilators, endothelin-1 type A (ET-1A) receptor antagonists, bisphosphonates, mineralocorticoid receptor (MR) antagonists, DNA demethylating agents, nuclear factor erythroid 2-related factor 2 (NRF2) activators, P2X7 inhibitors, autophagy modulators, hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) are discussed that could remarkably contribute against CKD. SUMMARY The review critically examines the potential for repurposing well-established drugs to slow the progression of CKD and enhance patient outcomes. This review emphasizes the importance of a multidisciplinary approach in advancing the field of drug repurposing, ultimately paving the way for innovative and effective therapies for patients suffering from CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| |
Collapse
|
3
|
Cinakova A, Vavrincova-Yaghi D, Krenek P, Klimas J, Kralova E. Combination of dapagliflozin and pioglitazone lacks superiority against monotherapy in streptozotocin-induced nephropathy. Sci Rep 2025; 15:1464. [PMID: 39789116 PMCID: PMC11718164 DOI: 10.1038/s41598-024-84487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model. Diabetes was induced in Wistar rats using streptozotocin (55 mg/kg, i.p.). The rats received daily chow containing dapagliflozin (10 mg/kg), pioglitazone (12 mg/kg) or their combination. Six weeks after STZ administration, histological and molecular analyses were performed in excised kidneys. STZ-induced DN was demonstrated by the propagation of apoptotic (Bax, p53, Casp3) and oxidative reactions (Gp91phox, MnSOD) and disrupted nitric oxide signalling (eNOS, Hsp90, Cav1). Kidney damage molecule expression (Kim1, Nphs1) revealed a deceleration of kidney damage by pioglitazone and dapagliflozine monotherapies. The monotherapy also reduced apoptosis, oxidative stress, and partially restored NO signalling. The combined therapy ameliorated glomerulosclerosis but in other measured parameters, it reached the effect of the monotherapies except for Hsp90 expression modulation. Both dapagliflozin and pioglitazone exert protective character in kidneys when used in monotherapy. The combined therapy does not exhibit an expected additive effect within modulating oxidative stress, NO signalling or apoptosis.
Collapse
Affiliation(s)
- Aneta Cinakova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Diana Vavrincova-Yaghi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Peter Krenek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Jan Klimas
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Eva Kralova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
| |
Collapse
|
4
|
Li X, Li C, Wu P, Zhang L, Zhou P, Ma X. Recent status and trends of innate immunity and the gut-kidney aixs in IgAN: A systematic review and bibliometric analysis. Int Immunopharmacol 2024; 143:113335. [PMID: 39423662 DOI: 10.1016/j.intimp.2024.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant global demand for precise diagnosis and effective treatment of IgA nephropathy (IgAN), with innate immunity, particularly the complement system, exerting a profound influence on its pathogenesis. Additionally, the gut-kidney axis pathway is vital in the emergence and development of IgAN. METHODS We conducted a comprehensive search in the Web of Science database, spanning from January 1, 2000 to December 18, 2023. The gathered literature underwent a visual examination through CiteSpace, VOSviewer, and Scimago Graphica to delve into authors, nations, organizations, key terms, and other pertinent elements. RESULT Between 2000 and 2023, a total of 720 publications were identified, out of which 436 publications underwent screening for highly relevant literature analysis. The average annual number of articles focusing on IgAN, innate immunity, and the gut-kidney axis is approximately 31, with an upward trend observed. In terms of research impact encompassing publication count and authorship, the United States emerged as the leading contributor. Prominent keywords included "complement", "activation", "microbe", "gut-kidney axis", "C4d deposition", "alternative pathway" and "B cells" along with other prospective hot topics. CONCLUSION The correlation between IgAN and innate immunity is a focal point in current scientific research. Recent literature underscores the significance of the gut-kidney axis, where intestinal microorganisms and metabolites may influence IgAN. The complement system, a key component of innate immunity, also has a crucial function.Advancements in prevention, diagnosis, and treatment hinge on unraveling this intricate relationship.
Collapse
Affiliation(s)
- Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chengni Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Peiwen Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Lifang Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Ping Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Xin Ma
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
5
|
Barbosa GSB, Câmara NOS, Ledesma FL, Duarte Neto AN, Dias CB. Vascular injury in glomerulopathies: the role of the endothelium. FRONTIERS IN NEPHROLOGY 2024; 4:1396588. [PMID: 39780910 PMCID: PMC11707422 DOI: 10.3389/fneph.2024.1396588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels). Dysregulation of those components is also associated with the progression of renal fibrosis, since endothelial cell damage promotes endothelial-to-mesenchymal transition. Although the potential mechanisms of vascular injury have been widely described in diabetic kidney disease, hypertensive nephrosclerosis, and hemolytic uremic syndrome, they require further elucidation in other glomerulopathies. A better understanding of the pathogenesis of vascular injury in patients with glomerular diseases could contribute to the development of specific treatments for such injury.
Collapse
Affiliation(s)
- Géssica Sabrine Braga Barbosa
- Renal Pathophysiology Laboratory, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | - Cristiane Bitencourt Dias
- Renal Pathophysiology Laboratory, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
6
|
De Cosmo S, Pontremoli R, Giandalia A, Manicardi V, Rocca A, Nicolucci A, Rossi MC, Lucisano G, Graziano G, Di Bartolo P, Di Cianni G, Candido R, Russo GT. Generalizability of kidney and cardiovascular protection by finerenone to the real world in Italy: insights from Fidelio and Figaro studies. J Nephrol 2024:10.1007/s40620-024-02171-8. [PMID: 39676127 DOI: 10.1007/s40620-024-02171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/16/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND We evaluated the proportion of Type 2 diabetes (T2D) patients with chronic kidney disease (CKD) participating in the AMD (Association of Medical Diabetologists) Annals initiative who met the eligibility criteria for phase III-studies on finerenone, showing its renal and cardiovascular benefits. METHODS This analysis involved all T2D patients seen in 2019 in 282 diabetes centers in Italy, for whom data on kidney function (estimated glomerular filtration rate and albuminuria) were available. Data are presented separately for different scenarios, covering the population with main eligibility criteria for inclusion in the FIDELIO-DKD and FIGARO-DKD trials. RESULTS Among 343,037 T2D patients involved in the analysis, 5.4% met the eligibility criteria of the FIDELIO-DKD study (13.3% if we consider the population with fundus data) and 22.3% met those of the FIGARO-DKD trial. Overall, 110,000 (33%) patients were eligible for treatment with finerenone, with a male prevalence, an average age of 71 years, and good control of the main risk factors (HbA1c 7.3%; BP 138/76 mmHg; LDL-c 87 mg/dl), albeit with large percentages of not well controlled patients (50% with SBP > 140 mmHg; > 30% with LDL-c > 100 mg/dl). Over 12% were on sodium/glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists. Based on the event rate from the FIDELITY pooled analysis, the number of potentially avoidable events was 21.7 per 1000 eligible patients for the cardiovascular composite outcome and 16.7 for the renal outcome. CONCLUSIONS This analysis showed that approximately 33% of patients with T2D present the main eligibility criteria for treatment with finerenone and could therefore benefit from it in the near future.
Collapse
Affiliation(s)
- Salvatore De Cosmo
- Department of Medical Sciences, Scientific Institute "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa and I.R.C.C.S., Viale Benedetto XV, 16125, Genoa, Italy
| | - Annalisa Giandalia
- Department of Human Pathology of Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy.
| | | | - Alberto Rocca
- "G. Segalini" H. Bassini Cinisello Balsamo ASST Nord, Milan, Italy
| | - Antonio Nicolucci
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Maria Chiara Rossi
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Giuseppe Lucisano
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Giusi Graziano
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Paolo Di Bartolo
- Department of Specialist Medicine, Ravenna Diabetes Center, Romagna Local Health Authority, Ravenna, Italy
| | - Graziano Di Cianni
- Diabetes and Metabolic Diseases Unit, Health Local Unit North-West Tuscany, Leghorn, Italy
| | - Riccardo Candido
- Diabetes Centre, University of Trieste, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Giuseppina T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Toofantabrizi M, Armagan S, Shrestha S, Singla R, Karki S, Singh A, Varma A, Singh MP, Sah S, Verma A. Focal Segmental Glomerulosclerosis With Superimposed Infection-Related Glomerulonephritis in a Diabetic Patient: A Case of Rapid Renal Decline. Clin Case Rep 2024; 12:e9593. [PMID: 39568532 PMCID: PMC11578678 DOI: 10.1002/ccr3.9593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
| | - Sena Armagan
- MedStar Franklin Square Medical Center Baltimore Maryland USA
| | | | - Rahul Singla
- MedStar Franklin Square Medical Center Baltimore Maryland USA
| | - Saurab Karki
- Department of Emergency Medicine Military Hospital Itahari Nepal
| | - Ajeet Singh
- Department of Internal Medicine Dow University of Health Sciences Karachi Pakistan
| | - Amit Varma
- Department of General Medicine Graphic Era (Deemed to be University) Clement Town Dehradun Dehradun India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai India
- Evidence for Policy and Learning Global Center for Evidence Synthesis Chandigarh India
| | - Sanjit Sah
- Dr. D. Y. Patil Medical College, Hospital and Research Centre Dr. D. Y. Patil Vidyapeeth Pune Maharashtra India
- Dr. D.Y. Patil Dental College and Hospital Dr. D.Y. Patil Vidyapeeth Pune Maharashtra India
| | - Amogh Verma
- SR Sanjeevani Hospital Kalyanpur Siraha Nepal
| |
Collapse
|
9
|
Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Sardu C, Russo V, Vetrano E, Monda M, Marfella R, Rinaldi L, Sasso FC. The Dual Burden: Exploring Cardiovascular Complications in Chronic Kidney Disease. Biomolecules 2024; 14:1393. [PMID: 39595570 PMCID: PMC11591570 DOI: 10.3390/biom14111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global health challenge, affecting millions of individuals and leading to substantial morbidity and mortality. This review aims to explore the epidemiology, cardiovascular complications, and management strategies associated with CKD, emphasizing the importance of preventing cardiovascular disease and early intervention. CKD is primarily driven by conditions such as diabetes mellitus, hypertension, and cardiovascular diseases, which often coexist and exacerbate renal impairment. Effective management requires a multifaceted approach, including lifestyle modifications, pharmacological interventions, and regular monitoring. Dietary changes, such as sodium restriction and a controlled intake of phosphorus and potassium, play a vital role in preserving renal function. Pharmacological therapies, particularly angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and emerging agents like SGLT2 inhibitors, have shown efficacy in slowing disease progression and improving patient outcomes. Furthermore, patients undergoing dialysis face increased cardiovascular risk, necessitating comprehensive management strategies to address both renal and cardiac health. As the landscape of CKD treatment evolves, ongoing research into novel therapeutic options and personalized medical approaches are essential. This review underscores the urgent need for awareness, education, and effective preventive measures to mitigate the burden of CKD and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
10
|
Rakotoarison A, Kepinska M, Konieczny A, Władyczak K, Janczak D, Hałoń A, Donizy P, Banasik M. Endothelin Inhibitors in Chronic Kidney Disease: New Treatment Prospects. J Clin Med 2024; 13:6056. [PMID: 39458006 PMCID: PMC11508847 DOI: 10.3390/jcm13206056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The endothelin system is reported to play a significant role in glomerular and tubulointerstitial kidney disease. In the kidney, endothelins are produced in mesangial cells and the glomerular basement membrane by the endothelium and podocytes. The endothelin system regulates glomerular function by inducing proliferation, increasing permeability and in effect proteinuria, and stimulating inflammation, tubular fibrosis, and glomerular scarring. Endothelin A receptor antagonists have been proven to delay the progression of chronic kidney disease and play a protective role in immunoglobulin A nephropathy, focal segmental glomerulosclerosis, and diabetic nephropathy. There are several ongoing research studies with ETAR antagonists in nondiabetic nephropathy, Alport disease, vasculitis and scleroderma nephropathy, which results are promising. Some reports suggest that the endothelin system might contribute to ischemia-reperfusion injury, acute graft rejection and deterioration of graft function. Endothelin inhibition in renal transplantation and its influence on graft survival is the future direction needing further research. The most frequent side effects associated with ETAR antagonists is fluid retention. Additionally, it should be considered if selective ETAR antagonists therapy needs to be co-administered with sodium-glucose co-transporter 2 inhibitors, renin-angiotensin-aldosterone inhibitors or diuretics and which patients should be recruited to such treatment to minimize the risk of adverse outcomes.
Collapse
Affiliation(s)
- Agata Rakotoarison
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-367 Wrocław, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Andrzej Konieczny
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-367 Wrocław, Poland;
| | - Karolina Władyczak
- Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.W.); (A.H.); (P.D.)
| | - Dariusz Janczak
- Department of General, Vascular and Transplant Surgery, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | - Agnieszka Hałoń
- Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.W.); (A.H.); (P.D.)
| | - Piotr Donizy
- Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.W.); (A.H.); (P.D.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-367 Wrocław, Poland;
| |
Collapse
|
11
|
Martos-Guillami N, Vergara A, Llorens-Cebrià C, Motto AE, Martínez-Díaz I, Gonçalves F, Garcias-Ramis MM, Allo-Urzainqui E, Narváez A, Bermejo S, Muñoz V, León-Román J, Ferrer-Costa R, Jacobs-Cachá C, Vilardell-Vilà J, Soler MJ. SGLT2i and GLP1-RA exert additive cardiorenal protection with a RAS blocker in uninephrectomized db/db mice. Front Pharmacol 2024; 15:1415879. [PMID: 39434906 PMCID: PMC11491409 DOI: 10.3389/fphar.2024.1415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Diabetic Kidney Disease (DKD) is the main cause of end-stage renal disease in the developed world. The current treatment of the DKD with renin-angiotensin system (RAS) blockade does not totally halt the progression to end stage kidney disease. Currently, several drugs have shown to delay DKD progression such as sodium-glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like-1 receptor agonists (GLP-1RA). We hypothesized that by combining several drugs that prevent DKD progression on top of RAS blockade a synergistic effect would be achieved in terms of cardiorenal protection. In the present study, we analysed if the combination of a RAS blocker (ramipril) with a SGLT2i (empagliflozin) and/or GLP-1RA (semaglutide) in a type 2 diabetic mouse model could have add-on effects in kidney and heart protection. Methods Male and female uninephrectomized type 2 diabetic db/db mice were treated with empagliflozin and/or semaglutide on top of ramipril during 8 weeks. During the study body weight, water and food intake were weekly monitored, glycaemia biweekly and albuminuria and glomerular filtration rate (GFR) before and after the treatment. At the end of the experiment, kidney and heart were isolated for histological and gene expression studies as well as for intrarenal RAS state assessment. Results Semaglutide combined with ramipril and/or empagliflozin significantly decreased albuminuria but only when combined with both compounds, semaglutide further decreased blood glucose, glomerular hyperfiltration in male mice and glomerular mesangial matrix expansion. In kidney, only the triple treatment with empagliflozin, semaglutide and ramipril reduced the expression of the proinflammatory and profibrotic genes ccl2 and TGFß1. In addition, the combination of empagliflozin and semaglutide on top of RAS blockade was superior in decreasing cardiomyocyte hypertrophy and heart fibrosis in db/db mice. Discussion Our results suggest that the combination of SGLT2i with GLP-1RA is superior in cardiorenal protection in DKD than the drugs administered alone on top of RAS blockade.
Collapse
Affiliation(s)
- Nerea Martos-Guillami
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aku Enam Motto
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Physiology/ Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, Lomé, Togo
| | - Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Gonçalves
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Magdalena Garcias-Ramis
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Estibaliz Allo-Urzainqui
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Alonso Narváez
- Urology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sheila Bermejo
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Vicent Muñoz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan León-Román
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer-Costa
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Jordi Vilardell-Vilà
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| |
Collapse
|
12
|
Mathur M, Sahay M, Pereira BJG, Rizk DV. State-of-Art Therapeutics in IgA Nephropathy. Indian J Nephrol 2024; 34:417-430. [PMID: 39372635 PMCID: PMC11450772 DOI: 10.25259/ijn_319_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/08/2024] Open
Abstract
Immunoglobulin-A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, with up to 40% of patients progressing to end-stage kidney disease (ESKD) within 30 years of diagnosis. IgAN is characterized by elevated serum levels of galactose-deficient IgA1 (Gd-IgA1), which leads to immune complex formation and deposition in the glomerular mesangium, causing kidney injury. A diverse disease course and the long-term follow-up required for clinically relevant endpoints (e.g., ESKD) have been barriers to the development of novel therapies in IgAN. Disease management has focused on supportive care with inhibitors of the renin-angiotensin system and, more recently, sodium-glucose transporter inhibitors to control proteinuria. The recent acceptance of proteinuria as a surrogate endpoint by regulatory bodies and a better understanding of disease pathology have helped to initiate the development of several novel treatments. Subsequently, a targeted-release formulation of budesonide and a dual endothelin/angiotensin inhibitor (sparsentan) have received accelerated approval for patients with IgAN. However, additional therapies are needed to target the different pathogenic mechanisms and individualize patient care. Several compounds currently under investigation target various effectors of pathology. There are promising clinical results from emerging compounds that target the generation of Gd-IgA1 by B cells, including inhibitors of A PRoliferation-Inducing Ligand (APRIL) and dual inhibitors of APRIL and B-cell activating factor (BAFF). Other investigational therapies target the complement cascade by inhibiting proteins of the lectin or alternative pathways. As the therapeutic landscape evolves, it will be important to revise treatment guidelines and develop updated standards of care.
Collapse
Affiliation(s)
| | - Manisha Sahay
- Department of Nephrology, Osmania General Hospital and Osmania Medical College, Hyderabad, India
| | | | - Dana V. Rizk
- Department of Medicine, Division of Nephrology, University of Alabama, Birmingham, USA
| |
Collapse
|
13
|
Zhang X, Wang H, Li J, Zhou F, Zhao M, Su T. Sunitinib-induced endocapillary proliferative glomerulonephritis with IgA2 deposit in addition to thrombotic microangiopathy: a case report. BMC Nephrol 2024; 25:284. [PMID: 39215250 PMCID: PMC11365231 DOI: 10.1186/s12882-024-03732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sunitinib, a multi-targeted tyrosine kinase inhibitor, is used as a second-line therapy for gastrointestinal stromal tumors (GIST) resistant to imatinib. However, its impact on the vascular endothelial growth factor (VEGF) pathway can lead to significant toxicities, including hypertension and thrombotic microangiopathy (TMA). CASE PRESENTATION This case report describes a unique instance of a patient with metastatic GIST who developed endocapillary proliferative glomerulonephritis (EPGN) with IgA2 deposits and TMA following sunitinib treatment. The patient presented with severe hypertension, nephrotic syndrome, and acute kidney injury. Renal biopsy confirmed the diagnosis, revealing IgA2 deposits, which are not commonly associated with TMA. Discontinuation of sunitinib led to a rapid improvement in renal function and proteinuria. The potential mechanisms underlying sunitinib-induced glomerular injury may involve the blockade of VEGFR-1, affecting immune cell recruitment and function, and the disruption of the nitric oxide and endothelin systems, leading to endothelial damage and immune dysregulation. Management of these toxicities requires a personalized approach, with options ranging from symptomatic relief to drug discontinuation. The use of endothelin receptor antagonists and other therapeutic alternatives for GIST management is discussed. CONCLUSIONS This case highlights the complex interplay between the therapeutic effects of sunitinib and its potential renal and cardiovascular toxicities, emphasizing the need for close monitoring and effective management strategies to optimize patient outcomes.
Collapse
Affiliation(s)
- Xin Zhang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hui Wang
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People's Republic of China
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Peking University Cancer Hospital and Institute, People's Republic of China
| | - Fude Zhou
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Minghui Zhao
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tao Su
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China.
- Institute of Nephrology, Peking University, Beijing, People's Republic of China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China.
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China.
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Huang H, Peng Z, Yuan Q. Research progress in anti-renal fibrosis drugs. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1353-1362. [PMID: 39788524 PMCID: PMC11628227 DOI: 10.11817/j.issn.1672-7347.2024.240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 01/12/2025]
Abstract
Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease (CKD) caused by various etiologies. It is characterized by the persistent deposition of extracellular matrix, leading to renal tissue damage and impaired renal function, and ultimately progressing to kidney failure. Current clinical treatments for CKD mainly focus on managing the primary diseases, with no specific drugs targeting renal fibrosis. The pathogenesis of renal fibrosis is complex, and there are currently no drugs available to reverse it. A comprehensive overview of the pathogenesis of renal fibrosis, alongside a summary of current anti-fibrotic therapies, including some that are already used clinically to slow renal function progression, new drugs in clinical trials, and emerging targeted therapies, could provide new theoretical foundations and perspectives for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hanwei Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China.
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China.
| |
Collapse
|
15
|
Zhang R, Wang Q, Li Y, Li Q, Zhou X, Chen X, Dong Z. A new perspective on proteinuria and drug therapy for diabetic kidney disease. Front Pharmacol 2024; 15:1349022. [PMID: 39144629 PMCID: PMC11322372 DOI: 10.3389/fphar.2024.1349022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end-stage renal disease worldwide and significantly increases the risk of premature death due to cardiovascular diseases. Elevated urinary albumin levels are an important clinical feature of DKD. Effective control of albuminuria not only delays glomerular filtration rate decline but also markedly reduces cardiovascular disease risk and all-cause mortality. New drugs for treating DKD proteinuria, including sodium-glucose cotransporter two inhibitors, mineralocorticoid receptor antagonists, and endothelin receptor antagonists, have shown significant efficacy. Auxiliary treatment with proprietary Chinese medicine has also yielded promising results; however, it also faces a broader scope for development. The mechanisms by which these drugs treat albuminuria in patients with DKD should be described more thoroughly. The positive effects of combination therapy with two or more drugs in reducing albuminuria and protecting the kidneys warrant further investigation. Therefore, this review explores the pathophysiological mechanism of albuminuria in patients with DKD, the value of clinical diagnosis and prognosis, new progress and mechanisms of treatment, and multidrug therapy in patients who have type 2 diabetic kidney disease, providing a new perspective on the clinical diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Ruimin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qihu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Zhou
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
16
|
Hou J, Liu S, Zhang X, Tu G, Wu L, Zhang Y, Yang H, Li X, Liu J, Jiang L, Tan Q, Bai F, Liu Z, Miao C, Hua T, Luo Z. Structural basis of antagonist selectivity in endothelin receptors. Cell Discov 2024; 10:79. [PMID: 39075075 PMCID: PMC11286772 DOI: 10.1038/s41421-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
Collapse
Affiliation(s)
- Junyi Hou
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yijie Zhang
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China.
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China.
| |
Collapse
|
17
|
Chiu AW, Bredenkamp N. Sparsentan: A First-in-Class Dual Endothelin and Angiotensin II Receptor Antagonist. Ann Pharmacother 2024; 58:645-656. [PMID: 37706310 DOI: 10.1177/10600280231198925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE To provide an overview of the guidelines on the management of immunoglobulin A nephropathy (IgAN) and focal segmental glomerulosclerosis (FSGS), review the evidence for sparsentan, and discuss its place in therapy. DATA SOURCES A literature search was conducted using MEDLINE, EMBASE, and clinicaltrials.gov using the search terms "sparsentan" and "RE-021" up to the end of Jun 2023. STUDY SELECTION AND DATA EXTRACTION English studies were included if they evaluated the pharmacology, pharmacokinetics, efficacy, and safety of sparsentan in human subjects. Information from the Food and Drug Administration (FDA) and manufacturer's monograph were also extracted. DATA SYNTHESIS In comparison with irbesartan, sparsentan reduced urine protein-to-creatinine ratio (UPCR) in both IgAN (-49.8% vs -15.1% at interim 36 weeks) and FSGS (-44.8% vs -18.5% at 8 weeks). Hypotension and edema were the most common adverse events in the sparsentan groups. Hepatotoxicity appears to be comparable between sparsentan and irbesartan in short-term results. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS Sparsentan provides a new option for patients with IgAN who are otherwise at high risk of progressive kidney disease. Continued FDA approval is dependent on long-term study results on renal function decline and safety. CONCLUSION Sparsentan reduces proteinuria in IgAN and FSGS, and has expedited approval by the FDA for IgAN in patients at risk of rapid disease progression, generally at urine protein-to-creatinine ratio (UPCR) ≥1.5 g/g. Interim results from PROTECT and results from DUET showed promise for improving proteinuria in IgAN and FSGS. Long-term renal function benefit and safety data are pending.
Collapse
Affiliation(s)
- Ada W Chiu
- Renal Program, Fraser Health Authority, Surrey, BC, Canada
| | | |
Collapse
|
18
|
Gironacci MM, Bruna-Haupt E. Unraveling the crosstalk between renin-angiotensin system receptors. Acta Physiol (Oxf) 2024; 240:e14134. [PMID: 38488216 DOI: 10.1111/apha.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024]
Abstract
The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Bruna-Haupt
- INTEQUI (CONICET), Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
19
|
Chavez E, Goncalves S, Rheault MN, Fornoni A. Alport Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:170-179. [PMID: 39004457 DOI: 10.1053/j.akdh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Alport syndrome (AS) is characterized by progressive kidney failure, hematuria, sensorineural hearing loss, and ocular abnormalities. Pathogenic variants in the COL4A3-5 genes result in a defective deposition of the collagen IV α3α4α5 protomers in the basement membranes of the glomerulus in the kidney, the cochlea in the ear and the cornea, lens capsule and retina in the eye. The presence of a large variety of COL4A3-5 gene(s) pathogenetic variants irrespective of the mode of inheritance (X-linked, autosomal recessive, autosomal dominant, or digenic) with and without syndromic features is better defined as the "Alport spectrum disorder", and represents the most common cause of genetic kidney disease and the second most common cause of genetic kidney failure. The clinical course and prognosis of individuals with AS is highly variable. It is influenced by gender, mode of inheritance, affected gene(s), type of genetic mutation, and genetic modifiers. This review article will discuss the epidemiology, classification, pathogenesis, diagnosis, clinical course with genotype-phenotype correlations, and current and upcoming treatment of patients with AS. It will also review current recommendations with respect to when to evaluate for hearing loss or ophthalmologic abnormalities.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, FL
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
20
|
Provenzano M, Hu L, Tringali E, Senatore M, Talarico R, Di Dio M, Ruotolo C, La Manna G, Garofalo C, Zaza G. Improving Kidney Disease Care: One Giant Leap for Nephrology. Biomedicines 2024; 12:828. [PMID: 38672183 PMCID: PMC11048002 DOI: 10.3390/biomedicines12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Nephrology is an ever-evolving field of medicine. The importance of such a discipline is related to the high clinical impact of kidney disease. In fact, abnormalities of kidney function and/or structure are common in the general population, reaching an overall prevalence of about 10%. More importantly, the onset of kidney damage is related to a strikingly high risk of cardiovascular events, mortality, and progression to kidney failure which, in turn, compromises quality and duration of life. Attempts to comprehend the pathogenesis and molecular mechanisms involved in kidney disease occurrence have prompted the development and implementation of novel drugs in clinical practice with the aim of treating the 'specific cause' of kidney disease (including chronic kidney disease, glomerular disease, and genetic kidney disorders) and the main immunological complications following kidney transplantation. Herein, we provide an overview of the principal emerging drug classes with proved efficacy in the context of the aforementioned clinical conditions. This can represent a simplified guide for clinical nephrologists to remind them of the vast and heterogeneous armamentarium of drugs that should be used in the present and the future to improve the management of patients suffering from kidney disease.
Collapse
Affiliation(s)
- Michele Provenzano
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Lilio Hu
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Edoardo Tringali
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Massimo Senatore
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Roberta Talarico
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Michele Di Dio
- Division of Urology, Department of Surgery, SS Annunziata Hospital, 87100 Cosenza, Italy;
| | - Chiara Ruotolo
- Unit of Nephrology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.R.); (C.G.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Carlo Garofalo
- Unit of Nephrology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.R.); (C.G.)
| | - Gianluigi Zaza
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| |
Collapse
|
21
|
Mazzieri A, Porcellati F, Timio F, Reboldi G. Molecular Targets of Novel Therapeutics for Diabetic Kidney Disease: A New Era of Nephroprotection. Int J Mol Sci 2024; 25:3969. [PMID: 38612779 PMCID: PMC11012439 DOI: 10.3390/ijms25073969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetic kidney disease (DKD) is a chronic microvascular complication in patients with diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD). Although glomerulosclerosis, tubular injury and interstitial fibrosis are typical damages of DKD, the interplay of different processes (metabolic factors, oxidative stress, inflammatory pathway, fibrotic signaling, and hemodynamic mechanisms) appears to drive the onset and progression of DKD. A growing understanding of the pathogenetic mechanisms, and the development of new therapeutics, is opening the way for a new era of nephroprotection based on precision-medicine approaches. This review summarizes the therapeutic options linked to specific molecular mechanisms of DKD, including renin-angiotensin-aldosterone system blockers, SGLT2 inhibitors, mineralocorticoid receptor antagonists, glucagon-like peptide-1 receptor agonists, endothelin receptor antagonists, and aldosterone synthase inhibitors. In a new era of nephroprotection, these drugs, as pillars of personalized medicine, can improve renal outcomes and enhance the quality of life for individuals with DKD.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Diabetes Clinic, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.M.), (F.P.)
| | - Francesca Porcellati
- Diabetes Clinic, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.M.), (F.P.)
| | - Francesca Timio
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Gianpaolo Reboldi
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
22
|
Shimizu Y, Tomino Y, Suzuki Y. IgA Nephropathy: Beyond the Half-Century. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:54. [PMID: 38256315 PMCID: PMC10821440 DOI: 10.3390/medicina60010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
In 1968, Jean Berger first introduced the medical world to IgA nephropathy (IgAN). Fifty-five years later, its pathogenesis is still unclear, but treatments such as renin-angiotensin-aldosterone system inhibitors (RAAS-Is), tonsillectomies, and glucocorticoids are currently used worldwide. There have been great strides in the past 20 years since the discoveries of the specific dysregulation of mucosal immunity, galactose-deficient IgA1 (Gd-IgA1), and Gd-IgA1 immune complexes in patients with IgAN. According to these findings, a multi-hit hypothesis was developed, and this multi-hit hypothesis has provided several putative therapeutic targets. A number of novel agents, including molecularly targeted drugs for targets such as APRIL, plasma cells, complement systems, and endothelin, are undergoing clinical trials. Some candidate drugs have been found to be effective, with minimal side effects. Over half a century after the discovery of IgAN, these therapies will soon be available for clinical use.
Collapse
Affiliation(s)
- Yoshio Shimizu
- Division of Nephrology, Department of Internal Medicine, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni 410-2295, Shizuoka, Japan
- Shizuoka Research Center for Disaster Medicine, Juntendo University, Izunokuni 410-2295, Shizuoka, Japan
| | - Yasuhiko Tomino
- Asian Pacific Renal Research Promotion Office, Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| |
Collapse
|
23
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
24
|
Russo E, Bussalino E, Macciò L, Verzola D, Saio M, Esposito P, Leoncini G, Pontremoli R, Viazzi F. Non-Haemodynamic Mechanisms Underlying Hypertension-Associated Damage in Target Kidney Components. Int J Mol Sci 2023; 24:ijms24119422. [PMID: 37298378 DOI: 10.3390/ijms24119422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Arterial hypertension (AH) is a global challenge that greatly impacts cardiovascular morbidity and mortality worldwide. AH is a major risk factor for the development and progression of kidney disease. Several antihypertensive treatment options are already available to counteract the progression of kidney disease. Despite the implementation of the clinical use of renin-angiotensin aldosterone system (RAAS) inhibitors, gliflozins, endothelin receptor antagonists, and their combination, the kidney damage associated with AH is far from being resolved. Fortunately, recent studies on the molecular mechanisms of AH-induced kidney damage have identified novel potential therapeutic targets. Several pathophysiologic pathways have been shown to play a key role in AH-induced kidney damage, including inappropriate tissue activation of the RAAS and immunity system, leading to oxidative stress and inflammation. Moreover, the intracellular effects of increased uric acid and cell phenotype transition showed their link with changes in kidney structure in the early phase of AH. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for hypertensive nephropathy management in the future. In this review, we would like to focus on the interactions of pathways linking the molecular consequences of AH to kidney damage, suggesting how old and new therapies could aim to protect the kidney.
Collapse
Affiliation(s)
- Elisa Russo
- U.O.C. Nefrologia e Dialisi, Ospedale San Luca, 55100 Lucca, Italy
| | - Elisabetta Bussalino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Lucia Macciò
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | | | - Michela Saio
- S.S.D. Nefrologia e Dialisi, Ospedale di Sestri Levante, 16124 Genova, Italy
| | - Pasquale Esposito
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Giovanna Leoncini
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Roberto Pontremoli
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Francesca Viazzi
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| |
Collapse
|
25
|
Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, Diva U, Inrig J, Komers R, Mercer A, Noronha IL, Rheault MN, Rote W, Rovin B, Trachtman H, Trimarchi H, Wong MG, Perkovic V. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 2023; 401:1584-1594. [PMID: 37015244 DOI: 10.1016/s0140-6736(23)00569-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety. METHODS PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥18 years) with biopsy-proven IgA nephropathy and proteinuria of 1·0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to <60 mL/min per 1·73 m2 and ≥60 mL/min per 1·73 m2) and urine protein excretion at screening (≤1·75 g/day and >1·75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850. FINDINGS Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (-49·8%) than the irbesartan group (-15·1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0·59; 95% CI 0·51-0·69; p<0·0001). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups. INTERPRETATION Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan. FUNDING Travere Therapeutics.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands; The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia.
| | | | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
| | - Stewart Bieler
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Jula Inrig
- Travere Therapeutics, San Diego, CA, USA
| | | | | | - Irene L Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michelle N Rheault
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Hernán Trimarchi
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia; Concord Clinical School, University of Sydney, Concord, NSW, Australia
| | - Vlado Perkovic
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Faculty of Medicine & Health, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|