1
|
Fu N, Wang L, Sun Q, Wang Q, Zhang Y, Han X, Yang Q, Ma W, Tong Z, Zhang J. Genome-wide identification of the bHLH transcription factor family and the regulatory roles of PbbHLH74 in response to drought stress in Phoebe bournei. Int J Biol Macromol 2024; 283:137760. [PMID: 39557253 DOI: 10.1016/j.ijbiomac.2024.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Phoebe species constitute a large portion of subtropical forestry, which are key players in biomass resources. However, abiotic stresses such as drought stress severely limit the growth and development of P. bournei, and even lead to its death. It has been shown that basic helix-loop-helix (bHLH) as the second largest transcription factor family plays essential roles in response to multiple stresses in plants. However, little information of bHLH family is available in P. bournei. In this study, 130 PbbHLHs were identified and classified into 24 subfamilies. Then, the bHLH domain, conserved motifs and gene structures, evolutionary patterns and protein structural features were probed. The expression levels of 17 PbbHLHs were differentially induced by PEG and ABA by RT-qPCR analysis, indicating that they may be involved in drought stress response. Characterization of the drought candidate gene PbbHLH74 showed that it was transcriptionally active and localized in the nucleus. Heterologous transformation of PbbHLH74 into yeast improved cellular tolerance to drought stress. Meanwhile, overexpression of PbbHLH74 in Arabidopsis showed higher seed germination, plant biomass and expression levels of stress-related genes under drought conditions. Through the hairy root technique, overexpression of PbbHLH74 in P. bournei improved drought tolerance by enhancing root development and expression levels of genes involved in ABA-dependent and ROS scavenging pathways. Moreover, PbbHLH74 might positively regulate the expression of PbPOD by Y1H and dual-luciferase reporter assays. Overall, these results elucidated the structure and evolution of the PbbHLH family, in which PbbHLH74 could be applied to molecular assisted breeding for drought tolerance in P. bournei.
Collapse
Affiliation(s)
- Ningning Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Li Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, PR China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| |
Collapse
|
2
|
Arshad KT, Xiang C, Yuan C, Li L, Wang J, Zhou P, Manzoor N, Yang S, Li M, Liang Y, Chen J, Zhao Y. Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14500. [PMID: 39221482 DOI: 10.1111/ppl.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.
Collapse
Affiliation(s)
- Khadija Tehseen Arshad
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Nazer Manzoor
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junwen Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhou Y, Xu Y, Zhu GF, Tan J, Lin J, Huang L, Ye Y, Liu J. Pigment Diversity in Leaves of Caladium × hortulanum Birdsey and Transcriptomic and Metabolic Comparisons between Red and White Leaves. Int J Mol Sci 2024; 25:605. [PMID: 38203776 PMCID: PMC10779550 DOI: 10.3390/ijms25010605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color is a key ornamental characteristic of cultivated caladium (Caladium × hortulanum Birdsey), a plant with diverse leaf colors. However, the genetic improvement of leaf color in cultivated caladium is hindered by the limited understanding of leaf color diversity and regulation. In this study, the chlorophyll and anthocyanin content of 137 germplasm resources were measured to explore the diversity and mechanism of leaf color formation in cultivated caladium. Association analysis of EST-SSR markers and pigment traits was performed, as well as metabolomics and transcriptomics analysis of a red leaf variety and its white leaf mutant. We found significant differences in chlorophyll and anthocyanin content among different color groups of cultivated caladium, and identified three, eight, three, and seven EST-SSR loci significantly associated with chlorophyll-a, chlorophyll-b, total chlorophyll and total anthocyanins content, respectively. The results further revealed that the white leaf mutation was caused by the down-regulation of various anthocyanins (such as cyanidin-3-O-rutinoside, quercetin-3-O-glucoside, and others). This change in concentration is likely due to the down-regulation of key genes (four PAL, four CHS, six CHI, eight F3H, one F3'H, one FLS, one LAR, four DFR, one ANS and two UFGT) involved in anthocyanin biosynthesis. Concurrently, the up-regulation of certain genes (one FLS and one LAR) that divert the anthocyanin precursors to other pathways was noted. Additionally, a significant change in the expression of numerous transcription factors (12 NAC, 12 bZIP, 23 ERF, 23 bHLH, 19 MYB_related, etc.) was observed. These results revealed the genetic and metabolic basis of leaf color diversity and change in cultivated caladium, and provided valuable information for molecular marker-assisted selection and breeding of leaf color in this ornamental plant.
Collapse
Affiliation(s)
- Yiwei Zhou
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Yechun Xu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Gen-Fa Zhu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Jianjun Tan
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Jingyi Lin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Lishan Huang
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Yuanjun Ye
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Jinmei Liu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| |
Collapse
|
4
|
Fu N, Wang L, Han X, Yang Q, Zhang Y, Tong Z, Zhang J. Genome-Wide Identification and Expression Analysis of Calmodulin and Calmodulin-like Genes, Revealing CaM3 and CML13 Participating in Drought Stress in Phoebe bournei. Int J Mol Sci 2023; 25:545. [PMID: 38203715 PMCID: PMC10778748 DOI: 10.3390/ijms25010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are major Ca2+ sensors involved in the regulation of plant development and stress responses by converting Ca2+ signals into appropriate cellular responses. However, characterization and expression analyses of CaM/CML genes in the precious species, Phoebe bournei, remain limited. In this study, five PbCaM and sixty PbCML genes were identified that only had EF-hand motifs with no other functional domains. The phylogenetic tree was clustered into 11 subgroups, including a unique clade of PbCaMs. The PbCaMs were intron-rich with four EF-hand motifs, whereas PbCMLs had two to four EF-hands and were mostly intronless. PbCaMs/CMLs were unevenly distributed across the 12 chromosomes of P. bournei and underwent purifying selection. Fragment duplication was the main driving force for the evolution of the PbCaM/CML gene family. Cis-acting element analysis indicated that PbCaMs/CMLs might be related to hormones, growth and development, and stress response. Expression analysis showed that PbCaMs were generally highly expressed in five different tissues and under drought stress, whereas PbCMLs showed specific expression patterns. The expression levels of 11 candidate PbCaMs/CMLs were responsive to ABA and MeJA, suggesting that these genes might act through multiple signaling pathways. The overexpression of PbCaM3/CML13 genes significantly increased the tolerance of yeast cells to drought stress. The identification and characterization of the CaM/CML gene family in P. bournei laid the foundation for future functional studies of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| |
Collapse
|
5
|
Wu D, Zhuang F, Wang J, Gao R, Zhang Q, Wang X, Zhang G, Fang M, Zhang Y, Li Y, Guan L, Gao Y. Metabolomics and Transcriptomics Revealed a Comprehensive Understanding of the Biochemical and Genetic Mechanisms Underlying the Color Variations in Chrysanthemums. Metabolites 2023; 13:742. [PMID: 37367900 PMCID: PMC10301146 DOI: 10.3390/metabo13060742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Flower color is an important characteristic of ornamental plants and is determined by various chemical components, including anthocyanin. In the present study, combined metabolomics and transcriptomics analysis was used to explore color variations in the chrysanthemums of three cultivars, of which the color of JIN is yellow, FEN is pink, and ZSH is red. A total of 29 different metabolites, including nine anthocyanins, were identified in common in the three cultivars. Compared with the light-colored cultivars, all of the nine anthocyanin contents were found to be up-regulated in the dark-colored ones. The different contents of pelargonidin, cyanidin, and their derivates were found to be the main reason for color variations. Transcriptomic analysis showed that the color difference was closely related to anthocyanin biosynthesis. The expression level of anthocyanin structural genes, including DFR, ANS, 3GT, 3MaT1, and 3MaT2, was in accordance with the flower color depth. This finding suggests that anthocyanins may be a key factor in color variations among the studied cultivars. On this basis, two special metabolites were selected as biomarkers to assist in chrysanthemum breeding for color selection.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fengchao Zhuang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiarui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guochao Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Minghui Fang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|