1
|
Thangasparan S, Kamisah Y, Ugusman A, Mohamad Anuar NN, Ibrahim N‘I. Unravelling the Mechanisms of Oxidised Low-Density Lipoprotein in Cardiovascular Health: Current Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:13292. [PMID: 39769058 PMCID: PMC11676878 DOI: 10.3390/ijms252413292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of death worldwide, with atherosclerosis, which is the formation of fatty plaques in the arteries, being the most common underlying cause. The activation of inflammatory events and endothelium dysfunction are crucial for the development and pathophysiology of atherosclerosis. Elevated circulating levels of low-density lipoprotein (LDL) have been associated with severity of atherosclerosis. LDL can undergo oxidative modifications, resulting in oxidised LDL (oxLDL). OxLDL has been found to have antigenic potential and contribute significantly to atherosclerosis-associated inflammation by activating innate and adaptive immunity. Various inflammatory stimuli such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1) play major roles in atherosclerosis. To date, studies have provided valuable insights into the role of oxLDL in the development of atherosclerosis. However, there remains a gap in understanding the specific pathways involved in this process. This review aims to provide and discuss the mechanisms by which oxLDL modulates signalling pathways that cause cardiovascular diseases by providing in vitro and in vivo experimental evidence. Its critical role in triggering and sustaining endothelial dysfunction highlights its potential as a therapeutic target. Advancing the understanding of its atherogenic role and associated signalling pathways could pave the way for novel targeted therapeutic strategies to combat atherosclerosis more effectively.
Collapse
Affiliation(s)
- Sahsikala Thangasparan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| | - Azizah Ugusman
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Programme of Biomedical Science, Center for Toxicology & Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| |
Collapse
|
2
|
Fu C, Xu J, Chen SL, Chen CB, Liang JJ, Liu Z, Huang C, Wu Z, Ng TK, Zhang M, Liu Q. Profile of Lipoprotein Subclasses in Chinese Primary Open-Angle Glaucoma Patients. Int J Mol Sci 2024; 25:4544. [PMID: 38674129 PMCID: PMC11050298 DOI: 10.3390/ijms25084544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.
Collapse
Affiliation(s)
- Changzhen Fu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jianming Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zibo Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| |
Collapse
|
3
|
Nihei W, Kato A, Himeno T, Kondo M, Nakamura J, Kamiya H, Sango K, Kato K. Hyperglycaemia Aggravates Oxidised Low-Density Lipoprotein-Induced Schwann Cell Death via Hyperactivation of Toll-like Receptor 4. Neurol Int 2024; 16:370-379. [PMID: 38525707 PMCID: PMC10961767 DOI: 10.3390/neurolint16020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Increased low-density lipoprotein levels are risk factors for diabetic neuropathy. Diabetes mellitus is associated with elevated metabolic stress, leading to oxidised low-density lipoprotein formation. Therefore, it is important to investigate the mechanisms underlying the pathogenesis of diabetic neuropathy in diabetes complicated by dyslipidaemia with increased levels of oxidised low-density lipoprotein. Here, we examined the effects of hyperglycaemia and oxidised low-density lipoprotein treatment on Schwann cell death and its underlying mechanisms. Immortalised mouse Schwann cells were treated with oxidised low-density lipoprotein under normo- or hyperglycaemic conditions. We observed that oxidised low-density lipoprotein-induced cell death increased under hyperglycaemic conditions compared with normoglycaemic conditions. Moreover, hyperglycaemia and oxidised low-density lipoprotein treatment synergistically upregulated the gene and protein expression of toll-like receptor 4. Pre-treatment with TAK-242, a selective toll-like receptor 4 signalling inhibitor, attenuated hyperglycaemia- and oxidised low-density lipoprotein-induced cell death and apoptotic caspase-3 pathway. Our findings suggest that the hyperactivation of toll-like receptor 4 signalling by hyperglycaemia and elevated oxidised low-density lipoprotein levels synergistically exacerbated diabetic neuropathy; thus, it can be a potential therapeutic target for diabetic neuropathy.
Collapse
Affiliation(s)
- Wataru Nihei
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Jiro Nakamura
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| |
Collapse
|
4
|
Kleimann P, Irschfeld LM, Grandoch M, Flögel U, Temme S. Trained Innate Immunity in Animal Models of Cardiovascular Diseases. Int J Mol Sci 2024; 25:2312. [PMID: 38396989 PMCID: PMC10889825 DOI: 10.3390/ijms25042312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Acquisition of immunological memory is an important evolutionary strategy that evolved to protect the host from repetitive challenges from infectious agents. It was believed for a long time that memory formation exclusively occurs in the adaptive part of the immune system with the formation of highly specific memory T cells and B cells. In the past 10-15 years, it has become clear that innate immune cells, such as monocytes, natural killer cells, or neutrophil granulocytes, also have the ability to generate some kind of memory. After the exposure of innate immune cells to certain stimuli, these cells develop an enhanced secondary response with increased cytokine secretion even after an encounter with an unrelated stimulus. This phenomenon has been termed trained innate immunity (TI) and is associated with epigenetic modifications (histone methylation, acetylation) and metabolic alterations (elevated glycolysis, lactate production). TI has been observed in tissue-resident or circulating immune cells but also in bone marrow progenitors. Risk-factors for cardiovascular diseases (CVDs) which are associated with low-grade inflammation, such as hyperglycemia, obesity, or high salt, can also induce TI with a profound impact on the development and progression of CVDs. In this review, we briefly describe basic mechanisms of TI and summarize animal studies which specifically focus on TI in the context of CVDs.
Collapse
Affiliation(s)
- Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Institute of Translational Pharmacology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
López de Las Hazas MC, Del Saz-Lara A, Cedó L, Crespo MC, Tomé-Carneiro J, Chapado LA, Macià A, Visioli F, Escola-Gil JC, Dávalos A. Hydroxytyrosol Induces Dyslipidemia in an ApoB100 Humanized Mouse Model. Mol Nutr Food Res 2024; 68:e2300508. [PMID: 37933702 DOI: 10.1002/mnfr.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, 16171, Spain
| | - Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, 08041, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona, 43005, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Alba Macià
- Department of Food Technology, Engineering and Science, XaRTA-TPV, Agrotecnio Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida, Lleida, 25198, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, Padova, 35121, Italy
| | - Joan C Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, 08041, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| |
Collapse
|
6
|
Orekhov A, Khotina V, Sukhorukov V, Sobenin I. Non-oxidative vs Oxidative Forms of Modified Low-density Lipoprotein: What is More Important in Atherogenesis? Curr Med Chem 2024; 31:2309-2313. [PMID: 38204226 DOI: 10.2174/0109298673294245240102105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Alexander Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| | | | - Vasily Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| | - Igor Sobenin
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| |
Collapse
|
7
|
Birts CN, Wilton DC. Could anionic LDL be a ligand for RAGE and TREM2 in addition to LOX-1 and thus exacerbate lung disease and dementia? Biochim Biophys Acta Mol Basis Dis 2023; 1869:166837. [PMID: 37544530 DOI: 10.1016/j.bbadis.2023.166837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
We recently highlighted the potential of protein glycation to generate anionic (electronegative) surfaces. We hypothesised that these anionic proteins are perceived by the innate immune system as arising from infection or damaged cell components, producing an inflammatory response within the lung involving the receptor RAGE. We now review two other pathologies linked to the innate immune response, cardiovascular disease and dementia that involve receptors LOX-1 and TREM2 respectively. Remarkable similarities in properties between RAGE, LOX-1 and TREM2 suggest that electronegative LDL may act as a pathogenic anionic ligand for all three receptors and exacerbate lung inflammation and dementia.
Collapse
Affiliation(s)
- Charles N Birts
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - David C Wilton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Benitez S, Sánchez-Quesada JL. Special Issue: New Insight into the Molecular Role of Lipids and Lipoproteins in Vascular Diseases. Int J Mol Sci 2023; 24:10659. [PMID: 37445837 DOI: 10.3390/ijms241310659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Lipids and lipoproteins play a key role in cardiovascular diseases (CVD), mainly in the development of atherosclerosis [...].
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|