1
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Vahidi S, Bigdeli MR, Shahsavarani H, Ahmadloo S, Roghani M. Neuroprotective Therapeutic Potential of microRNA-149-5p against Murine Ischemic Stroke. Mol Neurobiol 2024; 61:8886-8903. [PMID: 38573413 DOI: 10.1007/s12035-024-04159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.
Collapse
Affiliation(s)
- Samira Vahidi
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Bigdeli
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Salma Ahmadloo
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
3
|
Pimentel VD, Acha BT, Gomes GF, Macedo de Sousa Cardoso JL, Sena da Costa CL, Carvalho Batista NJ, Rufino Arcanjo DD, Alves WDS, de Assis Oliveira F. Anti-inflammatory effect of Anadenanthera colubrina var. cebil (Griseb.) Altschul in experimental elastase-induced pulmonary emphysema in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118216. [PMID: 38642622 DOI: 10.1016/j.jep.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1β, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.
Collapse
Affiliation(s)
- Vinicius Duarte Pimentel
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Gabriel Felicio Gomes
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Luiz Macedo de Sousa Cardoso
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Charllyton Luis Sena da Costa
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nelson Jorge Carvalho Batista
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Wellington Dos Santos Alves
- Laboratory of Natural Products and Bioprospection (LabPNBio), State University of Piauí, Teresina, Piauí, Brazil
| | - Francisco de Assis Oliveira
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
4
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Han J, Zhang J, Yao X, Meng M, Wan Y, Cheng Y. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol 2024; 61:7549-7566. [PMID: 38403721 DOI: 10.1007/s12035-024-04000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinnan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaojuan Yao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
6
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
7
|
Solodilova M, Drozdova E, Azarova I, Klyosova E, Bykanova M, Bushueva O, Polonikova A, Churnosov M, Polonikov A. The discovery of GGT1 as a novel gene for ischemic stroke conferring protection against disease risk in non-smokers and non-abusers of alcohol. J Stroke Cerebrovasc Dis 2024; 33:107685. [PMID: 38522756 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.
Collapse
Affiliation(s)
- Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Elena Drozdova
- Department of General Hygiene, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Elena Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, Belgorod 308015, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| |
Collapse
|
8
|
Zhang L, Li D, Zhang C, Zhang J, Xu J, Bai L, Xu J, Wang C. Predictive value of serum MDA and 4-HNE levels on the occurrence of early neurological deterioration after intravenous thrombolysis with rt-PA IVT in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107574. [PMID: 38214238 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE This study investigated the predictive value of serum MDA and 4-HNE levels on early neurological deterioration (END) after recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients. METHODS This study analyzed 287 AIS patients with standard-dose rt-PA IVT. Clinical baseline and pathological data were recorded before rt-PA IVT, and neurologic deficit was assessed by NIHSS. AIS patients were classified into Non-END and END groups. Serum MDA and 4-HNE levels were determined by ELISA and their correlations with NIHSS scores were evaluated. AIS patients were allocated into groups with high and low MDA or 4-HNE expression, and post-IVT END incidence was compared. Independent risk indexes for post-IVT END and the predictive value of serum MDA+4-HNE levels on post-IVT END were assessed. RESULTS Serum MDA and 4-HNE were higher in AIS patients with post-IVT END. NIHSS score showed a positive correlation with serum MDA and 4-HNE levels. MDA levels were positively correlated with 4-HNE levels in AIS patients. END after IVT was increased in AIS patients with high MDA/4-HNE expression. FBG, lymphocyte percentage, PLR, NIHSS score, serum MDA, and 4-HNE levels were independent risk factors for END after IVT. The diagnostic efficacy of MDA+4-HNE in assessing post-IVT END in AIS patients (sensitivity 92.00 %, specificity 82.70 %) was higher than MDA or 4-HNE alone. CONCLUSION Serum MDA and 4-HNE levels were higher in AIS patients with post-IVT END than in those with non-END, and MDA+4-HNE possessed a higher predictive value for post-IVT END in AIS patients.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Di Li
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Ce Zhang
- Dean's office, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province 116027, China
| | - Jianhui Zhang
- Department of Neurology, 967 Hospital of PLA Joint Logistic Support Force, 80 Shengli Road, Xigang District, Dalian City, Liaoning Province 116011, China
| | - Jia Xu
- Department of Neurology, Dalian Medical University, No. 28 Aixian Street, Dalian High-tech Park, 116044, China
| | - Lan Bai
- Beijing Yidu Cloud Technology Co., LTD., 8th Floor, Health Wisdom Valley Building, Building 9, No. 35 Huayuan North Road, Haidian District, Beijing, 100000, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu 215000, China
| | - Cui Wang
- Neurology Department, Dalian Central Hospital Affiliated to Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian City, Liaoning Province 116033, China.
| |
Collapse
|
9
|
Almarfadi OM, Siddiqui NA, Shahat AA, Fantoukh OI, El Gamal AA, Raish M, Bari A, Iqbal M, Alqahtani AS. Isolation of a novel isoprenylated phenolic compound and neuroprotective evaluation of Dodonaea viscosa extract against cerebral ischaemia-reperfusion injury in rats. Saudi Pharm J 2024; 32:101898. [PMID: 38192384 PMCID: PMC10772285 DOI: 10.1016/j.jsps.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-β-D-apiosyl-(1''' → 6'')- β-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.
Collapse
Affiliation(s)
- Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 2023; 251:125992. [PMID: 37544567 DOI: 10.1016/j.ijbiomac.2023.125992] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Lignin, a by-product of processing lignocellulosic materials, has a polyphenolic structure and can be used as an antioxidant directly or synergistically with synthetic types of antioxidants, leading to different applications. Its antioxidant mechanism is mainly related to the production of ROS, but the details need to be further investigated. The antioxidant property of lignin is mainly related to the content of phenolic hydroxyl group, but methoxy, purity will also have an effect on it. In addition, different methods to detect the antioxidant properties of lignin have different advantages and disadvantages. In this paper, the antioxidant mechanism of lignin, the methods to determine the antioxidant activity and the progress of its application in various fields are reviewed. In addition, the current research on the antioxidant properties of lignin and the hot directions are provided, and an outlook on the research into the antioxidant properties of lignin is provided to broaden its potential application areas.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023; 11:2617. [PMID: 37892991 PMCID: PMC10604797 DOI: 10.3390/biomedicines11102617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Among the high prevalence of cerebrovascular diseases nowadays, acute ischemic stroke stands out, representing a significant worldwide health issue with important socio-economic implications. Prompt diagnosis and intervention are important milestones for the management of this multifaceted pathology, making understanding the various stroke-onset symptoms crucial. A key role in acute ischemic stroke management is emphasizing the essential role of a multi-disciplinary team, therefore, increasing the efficiency of recognition and treatment. Neuroimaging and neuroradiology have evolved dramatically over the years, with multiple approaches that provide a higher understanding of the morphological aspects as well as timely recognition of cerebral artery occlusions for effective therapy planning. Regarding the treatment matter, the pharmacological approach, particularly fibrinolytic therapy, has its merits and challenges. Endovascular thrombectomy, a game-changer in stroke management, has witnessed significant advances, with technologies like stent retrievers and aspiration catheters playing pivotal roles. For select patients, combining pharmacological and endovascular strategies offers evidence-backed benefits. The aim of our comprehensive study on acute ischemic stroke is to efficiently compare the current therapies, recognize novel possibilities from the literature, and describe the state of the art in the interdisciplinary approach to acute ischemic stroke. As we aspire for holistic patient management, the emphasis is not just on medical intervention but also on physical therapy, mental health, and community engagement. The future holds promising innovations, with artificial intelligence poised to reshape stroke diagnostics and treatments. Bridging the gap between groundbreaking research and clinical practice remains a challenge, urging continuous collaboration and research.
Collapse
Affiliation(s)
- Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania;
- Neurosurgery Department, “Lucian Blaga” University of Medicine, 550024 Sibiu, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020022 Bucharest, Romania
| | - Horia Ples
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babes” University of Medicine and Pharmacy, 300736 Timisoara, Romania
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|