1
|
Chen N, Zhang B. IAV Antagonizes Host Innate Immunity by Weakening the LncRNA-LRIR2-Mediated Antiviral Functions. BIOLOGY 2024; 13:998. [PMID: 39765665 PMCID: PMC11727275 DOI: 10.3390/biology13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025]
Abstract
A growing number of studies have shown that long non-coding RNAs (lncRNAs) are implicated in many biological processes, including the regulation of innate immunity and IAV replication. In addition, IAV has been found to be able to hijack lncRNAs and thus antagonize host innate immunity. Nonetheless, whether IAV can antagonize host innate immunity by weakening the antiviral functions mediated by lncRNAs is unknown. In this study, we found that LncRNA-ENST00000491430 regulates IAV replication and named it LRIR2. Interestingly, we found that the expression of LRIR2 was suppressed during IAV infection. Importantly, LRIR2 overexpression inhibited IAV replication, suggesting that LRIR2 plays an antiviral role during IAV infection. Mechanistically, we demonstrated that LRIR2 inhibits the transcription and replication of the IAV genome. In addition, the antiviral function of LRIR2 is mainly dependent on the stem-loop structures of 1-118 nt and 575-683 nt. Taken together, IAV could antagonize host innate immunity by weakening the LncRNA-LRIR2-mediated antiviral functions. Our study provides novel perspectives into viral strategies to antagonize host innate immunity. It lays a theoretical foundation for the design of novel anti-IAV drugs that target host lncRNAs or the antagonism effect.
Collapse
Affiliation(s)
- Na Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
2
|
Qin Z, Liu W, Qin Z, Zhang H, Huang X. Host combats porcine reproductive and respiratory syndrome virus infection at non-coding RNAs level. Virulence 2024; 15:2416551. [PMID: 39403796 PMCID: PMC11492689 DOI: 10.1080/21505594.2024.2416551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global swine industry. The emergence of new, highly virulent strains has precipitated recurrent outbreaks worldwide, underscoring the ongoing battle between host and virus. Thus, there is an imperative to formulate a more comprehensive and effective disease control strategy. Studies have shown that host non-coding RNA (ncRNA) is an important regulator of host - virus interactions in PRRSV infection. Hence, a thorough comprehension of the roles played by ncRNAs in PRRSV infection can augment our understanding of the pathogenic mechanisms underlying PRRSV infection. This review focuses on elucidating contemporary insights into the roles of host microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in PRRSV infection, providing both theoretical foundations and fresh perspectives for ongoing research into the mechanisms driving PRRSV infection and its pathogenesis.
Collapse
Affiliation(s)
- Zhi Qin
- College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Weiye Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
3
|
Fu W, Chang X, Ye K, Zheng Z, Lai Q, Ge M, Shi Y. Genome-wide analysis reveals the MORC3-mediated repression of PD-L1 expression in head and neck cancer. Front Cell Dev Biol 2024; 12:1410130. [PMID: 39329063 PMCID: PMC11425343 DOI: 10.3389/fcell.2024.1410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Programmed death-ligand 1 (PD-L1) plays essential roles in the negative regulation of anti-tumor immunity. However, the regulatory mechanisms of PD-L1 expression need further exploration. MORC family CW-type zinc finger 3 (MORC3) is a transcriptional factor that regulates innate immune responses, but the expression and roles of MORC3 in cancers remain largely unknown. The present study explored the expression of MORC3 in cancers at both transcriptional and translational levels. Methods The target genes and pathways were analyzed using RNA interference (RNAi), RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR) technology in head and neck cancer cells. The expression of MORC3 and its target genes were also analyzed in single cancer cells. Results MORC3 was significantly downregulated in multiple cancers, including head and neck cancer, and low expression of MORC3 was associated with poor overall survival. MORC3 knockdown significantly increased the expression of many immune-related genes, including interferon (IFN)-associated genes [MX dynamin like GTPase 2 (MX2), interferon induced protein with tetratricopeptide repeats 1 (IFIT1), interferon induced protein with tetratricopeptide repeats 2 (IFIT2), interferon regulatory factor 7 (IRF7), interferon regulatory factor 9 (IRF9), interferon induced protein 44 like (IFI44L), interferon induced transmembrane protein 1 (IFITM1), interferon induced transmembrane protein 3 (IFITM3), interferon induced protein 44 (IFI44), and interferon induced with helicase C domain 1 (IFIH1)]. MORC3 knockdown significantly upregulated PD-L1 and signal transducer and activator of transcription 1 (STAT1) expression. Moreover, the LINC00880 immune-related long non-coding RNA (lnc-RNA) was upregulated by MORC3 knockdown. Silencing LINC00880 attenuated PD-L1 expression. MORC3 knockdown also increased the expression of cellular proliferation-related genes and promoted cancer cell proliferation. Conclusion The present study demonstrated that MORC3 regulates IFN-associated pathways and is a novel repressor of PD-L1 expression and cancer cell proliferation.
Collapse
Affiliation(s)
- Wenxuan Fu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Xiaomeng Chang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Kun Ye
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Zige Zheng
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Qianyi Lai
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Minyang Ge
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Yan Shi
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| |
Collapse
|
4
|
Vargas JD, Abbas M, Goodney G, Gaye A. Regulatory Roles of Long Non-Coding RNAs in Arterial Stiffness and Hypertension: Insights from Two African American Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607492. [PMID: 39372764 PMCID: PMC11451656 DOI: 10.1101/2024.08.11.607492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Arterial stiffness, commonly assessed via pulse wave velocity (PWV), is marked by reduced arterial elasticity and serves as a significant risk factor for cardiovascular disease and an early indicator of hypertension. This study investigated the regulatory roles of long non-coding RNAs (lncRNAs) in modulating mRNAs associated with arterial stiffness and hypertension, with a particular focus on African Americans, a population disproportionately impacted by hypertension. Methods We utilized whole-blood transcriptome sequencing data from two African American (AA) cohorts with high hypertension prevalence: the GENE-FORECAST study (436 subjects) and the MH-GRID study (179 subjects). Our objectives were to: (1) identify lncRNAs and mRNAs differentially expressed (DE) between the upper and lower tertiles of PWV, (2) determine DE lncRNAs associated with the expression levels of each DE mRNA, and (3) link the lncRNA-modulated mRNAs to hypertension across both datasets. Results Differential expression analysis revealed 1,035 DE mRNAs and 31 DE lncRNAs between upper and lower PWV groups. Then lncRNA-mRNA pairs significantly associated were identified, involving 31 unique lncRNAs and 1,034 unique mRNAs. Finally, 22 of the lncRNA-modulated mRNAs initially linked to PWV were found associated with hypertension, in both datasets. Interestingly, 30 lncRNAs were linked to the expression of UCP2 (Uncoupling Protein 2), a gene implicated in oxidative stress and endothelial function. Conclusions Our findings underscore the significant roles of lncRNAs in regulating gene expression associated with arterial stiffness and hypertension. The differential expression of UCP2 in relation to PWV and hypertension, along with its potential regulation by lncRNAs, offers valuable insights into the molecular mechanisms underlying arterial stiffness and its connection with hypertension.
Collapse
Affiliation(s)
| | - Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Chi X, Huang G, Wang L, Zhang X, Liu J, Yin Z, Guo G, Chen Y, Wang S, Chen JL. A small protein encoded by PCBP1-AS1 is identified as a key regulator of influenza virus replication via enhancing autophagy. PLoS Pathog 2024; 20:e1012461. [PMID: 39137200 PMCID: PMC11343454 DOI: 10.1371/journal.ppat.1012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/23/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Many annotated long noncoding RNAs (lncRNAs) contain small open reading frames (sORFs), some of which have been demonstrated to encode small proteins or micropeptides with fundamental biological importance. However, functions of lncRNAs-encoded small proteins or micropeptides in viral pathogenesis remain largely unexplored. Here, we identified a 110-amino acid small protein as a key regulator of influenza A virus (IAV) replication. This small protein that we call PESP was encoded by the putative lncRNA PCBP1-AS1. It was observed that both PCBP1-AS1 and PESP were significantly upregulated by IAV infection. Furthermore, they were markedly induced by treatment with either type I or type III interferon. Overexpression of either PCBP1-AS1 or PESP alone significantly enhanced IAV replication. In contrast, shRNA-mediated knockdown of PCBP1-AS1 or CRISPR/Cas9-mediated knockout of PESP markedly inhibited the viral production. Moreover, the targeted deletion or mutation of the sORF within the PCBP1-AS1 transcript, which resulted in the disruption of PESP expression, significantly diminished the capacity of PCBP1-AS1 to enhance IAV replication, underscoring the indispensable role of PESP in the facilitation of IAV replication by PCBP1-AS1. Interestingly, overexpression of PESP enhanced the IAV-induced autophagy by increasing the expression of ATG7, an essential autophagy effector enzyme. We also found that the 7-22 amino acids at the N-terminus of PESP were crucial for its functionality in modulating ATG7 expression and action as an enhancer of IAV replication. Additionally, HSP90AA1, a protein identified previously as a facilitator of autophagy, was found to interact with PESP, resulting in the stabilization of PESP and consequently an increase in the production of IAV. These data reveal a critical lncRNA-encoded small protein that is induced and exploited by IAV during its infection, and provide a significant insight into IAV-host interaction network.
Collapse
Affiliation(s)
- Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guiying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liwei Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinge Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayin Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihui Yin
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|