1
|
Li F, Cui C, Li C, Yu Y, Zeng Q, Li X, Zhao W, Dong J, Gao X, Xiang J, Zhang D, Wen S, Yang M. Cytology, metabolomics, and proteomics reveal the grain filling process and quality difference of wheat. Food Chem 2024; 457:140130. [PMID: 38943917 DOI: 10.1016/j.foodchem.2024.140130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Comparative proteomics and non-target metabolomics, together with physiological and microstructural analyses of wheat grains (at 15, 20, 25, and 30 days after anthesis) from two different quality wheat varieties (Gaoyou 5766 (strong-gluten) and Zhoumai 18) were performed to illustrate the grain filling material dynamics and to search for quality control genes. The differential expressions of 1541 proteins and 406 metabolites were found. They were mostly engaged in protein metabolism, stress/defense, energy metabolism, and amino acid metabolism, and the metabolism of stored proteins and carbohydrates was the major focus of the latter stages. The core proteins and metabolites in the growth process were identified, and the candidate genes for quality differences were screened. In conclusion, this study offers a molecular explanation for the establishment of wheat quality, and it aids in our understanding of the intricate metabolic network between different qualities of wheat at the filling stage.
Collapse
Affiliation(s)
- Fang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Yan Yu
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiaoyan Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wanchun Zhao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jishan Xiang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Dingguo Zhang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
2
|
Shafiq A, Munawar ME, Nadeem M, Khan A, Abbasi GH, Haq MAU, Ayub MA, Iftikhar I, Awais M. Health risk assessment of bread wheat grown under cadmium and nickel stress and impact of silicic acid application on its growth, physiology, and metal uptake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55535-55548. [PMID: 39235755 DOI: 10.1007/s11356-024-34849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Heavy metal stress poses a significant threat to the productivity of agricultural systems and human health. Silicon (Si) is widely reported to be very effective against the different heavy metal stresses in crops. According to reports, it can help plants that are under cadmium (Cd) and nickel (Ni) stress. The presented work investigated how silicon interacted in Cd- and Ni-stressed wheat and mitigated metal toxicity. A pot experiment was carried out in which wheat crop was irrigated with Cd- and Ni-contaminated water. Application of Cd and Ni-contaminated water to wheat significantly reduced the root and shoot growth parameters and physiological and biochemical factors while increasing the antioxidant enzymatic activity and bioaccumulation of Cd and Ni metal in shoot and root as compared to the control. Application of Si led to an improvement in physiological parameters, i.e., greenness of leaves, i.e., SPAD values (17% and 26%), membrane stability (26% and 25%), and growth parameters i.e., root surface area (42% and 23%), root length (81% and 79%), root dry weight (456% and 190%), root volume (64% and 32%), shoot length (41% and 35%), shoot dry weight of shoot (111% and 117%), and overall grain weight (62% and 72%) under Cd and Ni stress, respectively. It increased the activity of antioxidant activity (max. up to 20%) whereas decreased the metal bioaccumulation of Cd and Ni in the roots and shoot (max. up to 62%) of wheat. It was concluded that the application of Si potentially increases antioxidant activity and metal chelation resulting in decreased oxidative damage and reducing the effect of Cd and Ni stress on wheat which improves growth and physiological parameters as well as inhibits Cd and Ni inclusion in food chain under Cd and Ni toxicity reducing health risks associated with these metals.
Collapse
Affiliation(s)
- Alina Shafiq
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Emmad Munawar
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nadeem
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Asia Khan
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Hasan Abbasi
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Anwar Ul Haq
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ashar Ayub
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irfan Iftikhar
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Awais
- Institute of Soil and Environmental Science, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
3
|
Wu Z, Chen F, Zhang L, Zhou M, Hou Y. Cytochrome c Oxidase Influences Pyraclostrobin Sensitivity in Fusarium graminearum by Regulating FgAox Through Transcription Factors FgAod2 and FgAod5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18412-18422. [PMID: 39120516 DOI: 10.1021/acs.jafc.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytochrome c oxidase (Cox) is a crucial terminal oxidase in the electron transport chain. In this study, we generated 14 Cox gene deletion or overexpression mutants in Fusarium graminearum. Fungicide sensitivity tests revealed that 11 Cox gene deletion mutants displayed resistance to pyraclostrobin, while 10 overexpression mutants showed hypersensitivity. RNA-Seq and RT-qPCR analyses demonstrated the upregulation of FgAox (alternative oxidase in F. graminearum), FgAod2, and FgAod5 (alternative oxidase deficiency in F. graminearum) in ΔFgCox4-2 and ΔFgCox17-75 mutants. In 11 Cox gene deletion mutants, FgAox expression was significantly upregulated, whereas in 10 Cox gene overexpression mutants, it was significantly downregulated. FgAox overexpression mutants exhibit resistance to pyraclostrobin, while FgAox deletion mutants show hypersensitivity to pyraclostrobin. FgAod2 and FgAod5 were identified as transcription factors for FgAox. Our findings reveal that FgCox influences pyraclostrobin sensitivity by regulating FgAox through FgAod2 and FgAod5. Understanding pyraclostrobin resistance mechanisms in F. graminearum could help develop better fungicide rotation and application strategies to manage resistance and guide the creation of new fungicides targeting different pathways.
Collapse
Affiliation(s)
- Zhiwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Furong Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lingrong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
4
|
Gao W, Wu D, Zhang D, Geng Z, Tong M, Duan Y, Xia W, Chu J, Yao X. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172555. [PMID: 38677420 DOI: 10.1016/j.scitotenv.2024.172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Wang Gao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zixin Geng
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
5
|
Wang Y, Ou X, He HJ, Kamruzzaman M. Advancements, limitations and challenges in hyperspectral imaging for comprehensive assessment of wheat quality: An up-to-date review. Food Chem X 2024; 21:101235. [PMID: 38420503 PMCID: PMC10900407 DOI: 10.1016/j.fochx.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
The potential of hyperspectral imaging technology (HIT) for the determination of physicochemical and nutritional components, evaluation of fungal/mycotoxins contamination, wheat varieties classification, identification of non-mildew-damaged wheat kernels, as well as detection of flour adulteration is comprehensively illustrated and reviewed. The latest findings (2018-2023) of HIT in wheat quality evaluation through internal and external attributes are compared and summarized in detail. The limitations and challenges of HIT to improve assessment accuracy are clearly described. Additionally, various practical recommendations and strategies for the potential application of HIT are highlighted. The future trends and prospects of HIT in evaluating wheat quality are also mentioned. In conclusion, HIT stands as a cutting-edge technology with immense potential for revolutionizing wheat quality evaluation. As advancements in HIT continue, it will play a pivotal role in shaping the future of wheat quality assessment and contributing to a more sustainable and efficient food supply chain.
Collapse
Affiliation(s)
- Yuling Wang
- School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xingqi Ou
- School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Mohammed Kamruzzaman
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Xin L, Fu Y, Ma S, Li C, Wang H, Gao Y, Wang X. Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:4086. [PMID: 38140412 PMCID: PMC10747144 DOI: 10.3390/plants12244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
To develop optimal management strategies for water and nitrogen fertilizer application in winter wheat cultivation, we conducted a potted experiment to investigate the effects of different irrigation levels and nitrogen fertilizer treatments on the activity of starch synthesis-related enzymes and the grain quality of winter wheat. The potted experiment consisted of three irrigation levels, with the lower limits set at 50-55% (I0), 60-65% (I1), and 70-75% (I2) of the field capacity. In addition, four levels of nitrogen fertilizer were applied, denoted as N0 (0 kg N hm-2), N1 (120 kg N hm-2), N2 (240 kg N hm-2), and N3 (300 kg N hm-2), respectively. The results revealed the significant impacts of irrigation and nitrogen treatments on the activities of key starch-related enzymes, including adenosine diphosphoglucose pyrophosphrylase (ADPG-PPase), soluble starch synthase (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE) in wheat grains. These treatments also influenced the starch content, amylopectin content, and, ultimately, wheat yield. In summary, our findings suggest that maintaining irrigation at a lower limit of 60% to 65% of the field capacity and applying nitrogen fertilizer at a rate of 240 kg hm-2 is beneficial for achieving both high yield and high quality in winter wheat cultivation.
Collapse
Affiliation(s)
- Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Caixia Li
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
- Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xingpeng Wang
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| |
Collapse
|
7
|
Gultyaeva E, Shaydayuk E. Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust. PLANTS (BASEL, SWITZERLAND) 2023; 12:3471. [PMID: 37836211 PMCID: PMC10574662 DOI: 10.3390/plants12193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Over the last decade, the significance of yellow rust caused by Puccinia striiformis (Pst) has substantially increased worldwide, including in Russia. The development and cultivation of resistant genotypes is the most efficient control method. The present study was conducted to explore the yellow rust resistance potential of modern common winter wheat cultivars included in the Russian Register of Breeding Achievements in 2019-2022 using the seedling tests with an array of Pst races and molecular markers linked with Yr resistance genes. Seventy-two winter wheat cultivars were inoculated with five Pst isolates differing in virulence and origin. Molecular markers were used to identify genes Yr2, Yr5, Yr7, Yr9, Yr10, Yr15, Yr17, Yr18, Yr24, Yr25 and Yr60. Thirteen cultivars were resistant to all Pst isolates. The genes Yr5, Yr10, Yr15 and Yr24 that are effective against all Russian Pst races in resistant cultivars were not found. Using molecular methods, gene Yr9 located in translocation 1BL.1RS was detected in 12 cultivars, gene Yr18 in 24, gene Yr17 in 3 and 1AL.1RS translocation with unknown Yr gene in 2. While these genes have lost effectiveness individually, they can still enhance genetic diversity and overall yellow rust resistance, whether used in combination with each other or alongside other Yr genes.
Collapse
Affiliation(s)
- Elena Gultyaeva
- All Russian Institute of Plant Protection, Shosse Podbelskogo 3, St. Petersburg 1986608, Russia;
| | | |
Collapse
|
8
|
Qin Y, Zhao H, Han H, Zhu G, Wang Z, Li F. Chromosome-Level Genome Assembly and Population Genomic Analyses Reveal Geographic Variation and Population Genetic Structure of Prunus tenella. Int J Mol Sci 2023; 24:11735. [PMID: 37511492 PMCID: PMC10380494 DOI: 10.3390/ijms241411735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Prunus tenella is a rare and precious relict plant in China. It is an important genetic resource for almond improvement and an indispensable material in ecological protection and landscaping. However, the research into molecular breeding and genetic evolution has been severely restricted due to the lack of genome information. In this investigation, we created a chromosome-level genomic pattern of P. tenella, 231 Mb in length with a contig N50 of 18.1 Mb by Hi-C techniques and high-accuracy PacBio HiFi sequencing. The present assembly predicted 32,088 protein-coding genes, and an examination of the genome assembly indicated that 94.7% among all assembled transcripts were alignable to the genome assembly; most (97.24%) were functionally annotated. By phylogenomic genome comparison, we found that P. tenella is an ancient group that diverged approximately 13.4 million years ago (mya) from 13 additional closely related species and about 6.5 Mya from the cultivated almond. Collinearity analysis revealed that P. tenella is highly syntenic and has high sequence conservation with almond and peach. However, this species also exhibits many presence/absence variants. Moreover, a large inversion at the 7588 kb position of chromosome 5 was observed, which may have a significant association with phenotypic traits. Lastly, population genetic structure analysis in eight different populations indicated a high genetic differentiation among the natural distribution of P. tenella. This high-quality genome assembly provides critical clues and comprehensive information for the systematic evolution, genetic characteristics, and functional gene research of P. tenella. Moreover, it provides a valuable genomic resource for in-depth study in protection, developing, and utilizing P. tenella germplasm resources.
Collapse
Affiliation(s)
- Yue Qin
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Hongwei Han
- Economic Forest Research Institute, Xinjiang Academy of Forestry, Urumqi 830000, China
| | - Gaopu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Zhaoshan Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|