1
|
Cao S, Wang S, Luo H, Guo J, Xuan L, Sun L. The effect of macrophage-cardiomyocyte interactions on cardiovascular diseases and development of potential drugs. Mol Biol Rep 2024; 51:1056. [PMID: 39417949 DOI: 10.1007/s11033-024-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
The interaction between macrophages and cardiomyocytes plays an important role not only in maintaining cardiac homeostasis, but also in the development of many cardiovascular diseases (CVDs), such as myocardial infarction (MI) and heart failure (HF). In addition to supporting cardiomyocytes, macrophages and cardiomyocytes have a close and complex relationship. By studying their cross-talk, we can better understand novel mechanisms and target pathogenic mechanisms, and improve the treatment of CVDs. We review macrophage-cardiomyocyte communication through connexin 43 (Cx43)-containing gap junctions (GJs) directly, secreted protein factors indirectly, and discuss the implications of these interactions in cardiac homeostasis and the development of various CVDs, including MI, HF, arrhythmia, cardiac fibrosis and myocarditis. In this section, we review various drugs that work by modulating cytokines or other proteins to reduce inflammation in CVDs. The clinical findings from targeting inflammation in CVDs are also discussed. Additionally, we examine the challenges and opportunities for improving our understanding of macrophage-cardiomyocyte coupling as it relates to pathophysiological disease processes, extending our research scope, and helping identify new molecular targets and improve the effectiveness of existing therapies.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| | - Lihua Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| |
Collapse
|
2
|
Jiang R, Lou L, Shi W, Chen Y, Fu Z, Liu S, Sok T, Li Z, Zhang X, Yang J. Statins in Mitigating Anticancer Treatment-Related Cardiovascular Disease. Int J Mol Sci 2024; 25:10177. [PMID: 39337662 PMCID: PMC11432657 DOI: 10.3390/ijms251810177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Certain anticancer therapies inevitably increase the risk of cardiovascular events, now the second leading cause of death among cancer patients. This underscores the critical need for developing effective drugs or regimens for cardiovascular protection. Statins possess properties such as antioxidative stress, anti-inflammatory effects, antifibrotic activity, endothelial protection, and immune modulation. These pathological processes are central to the cardiotoxicity associated with anticancer treatment. There is prospective clinical evidence confirming the protective role of statins in chemotherapy-induced cardiotoxicity. Numerous preclinical studies have demonstrated that statins can ameliorate heart and endothelial damage caused by radiotherapy, although clinical studies are scarce. In the animal models of trastuzumab-induced cardiomyopathy, statins provide protection through anti-inflammatory, antioxidant, and antifibrotic mechanisms. In animal and cell models, statins can mitigate inflammation, endothelial damage, and cardiac injury induced by immune checkpoint inhibitors. Chimeric antigen receptor (CAR)-T cell therapy-induced cardiotoxicity and immune effector cell-associated neurotoxicity syndrome are associated with uncontrolled inflammation and immune activation. Due to their anti-inflammatory and immunomodulatory effects, statins have been used to manage CAR-T cell therapy-induced immune effector cell-associated neurotoxicity syndrome in a clinical trial. However, direct evidence proving that statins can mitigate CAR-T cell therapy-induced cardiotoxicity is still lacking. This review summarizes the possible mechanisms of anticancer therapy-induced cardiotoxicity and the potential mechanisms by which statins may reduce related cardiac damage. We also discuss the current status of research on the protective effect of statins in anticancer treatment-related cardiovascular disease and provide directions for future research. Additionally, we propose further studies on using statins for the prevention of cardiovascular disease in anticancer treatment.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wen Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaoming Fu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuo Liu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Thida Sok
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihang Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Pecoraro M, Serra A, Pascale M, Franceschelli S. The ER Stress Induced in Human Neuroblastoma Cells Can Be Reverted by Lumacaftor, a CFTR Corrector. Curr Issues Mol Biol 2024; 46:9342-9358. [PMID: 39329905 PMCID: PMC11430679 DOI: 10.3390/cimb46090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Most neurodegenerative diseases share a common etiopathogenesis, the accumulation of protein aggregates. An imbalance in homeostasis brought on by the buildup of misfolded proteins within the endoplasmic reticulum (ER) results in ER stress in the cell. Three distinct proteins found in the ER membrane-IRE1α, PERK, and ATF6-control the unfolded protein response (UPR), a signal transduction pathway that is triggered to restore normal physiological conditions. Buildup of misfolded proteins in ER lumen leads to a shunting of GRP78/BiP, thus triggering the UPR. PERK autophosphorylation leads to activation of ATF4, the transcription factor; finally, ATF6 activates the UPR's target genes, including GRP78/Bip. Accordingly, the UPR is a cellular reaction to an ER stress state that, if left unchecked for an extended period, results in apoptosis and irreversible damage. The identification of caspase 4, which is in the ER and is selectively activated by apoptotic stimuli caused by reticular stress, further demonstrated the connection between reticular stress and programed cell death. Moreover, oxidative stress and ER stress are linked. Oxidative stress is brought on by elevated quantities of radical oxygen species, both mitochondrial and cytosolic, that are not under the enzymatic regulation of superoxide dismutases, whose levels fall with increasing stress. Here, we evaluated the activity of Vx-809 (Lumacaftor), a drug used in cystic fibrosis, in SH-SY5Y neuronal cells, in which an ER stress condition was induced by Thapsigargin, to verify whether the drug could improve protein folding, suggesting its possible therapeutic use in proteinopathies, such as neurodegenerative diseases (NDs). Our data show that Vx-809 is involved in the significant reduction in protein produced under ER stress, particularly in the levels of Bip, ATF4, and ATF6 by Western blotting analysis, the reduction in ROS in the cytosol and mitochondria, and the reduction in the activation of the apoptotic pathway, measured by flow cytofluorimetry analysis and in restoring calcium homeostasis.
Collapse
Affiliation(s)
- Michela Pecoraro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Adele Serra
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Maria Pascale
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Felix N, Nogueira PC, Silva IM, Costa TA, Campello CA, Stecca C, Lopes RD. Cardio-protective effects of statins in patients undergoing anthracycline-based chemotherapy: An updated meta-analysis of randomized controlled trials. Eur J Intern Med 2024; 126:43-48. [PMID: 38643042 DOI: 10.1016/j.ejim.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Several interventions have been tested for cardio-protection against anthracycline-induced cancer therapy-related cardiovascular dysfunction (CTRCD). The role of statins in this setting remains unclear. METHODS We systematically searched PubMed, Embase, Cochrane Library, Clinicaltrials.gov, and Web of Science for randomized controlled trials (RCTs) comparing statins versus control (placebo or no intervention) for preventing anthracycline-induced CTRCD. We applied a random-effects model to pool risk ratios (RR) and mean differences (MD) with 95 % confidence intervals (CI). RESULTS We included seven RCTs comprising 887 patients with planned chemotherapy with anthracycline-based regimens, of whom 49.8 % were randomized to statins. Relative to placebo, statins significantly reduced the incidence of cardiotoxicity/CTRCD (RR 0.46; 95 % CI 0.29 to 0.72; p < 0.001). The left ventricular end-systolic volume was also lower in patients treated with statin (MD -3.12 mL; 95 % CI -6.13 to -0.12 mL; p = 0.042). There was no significant difference between groups in post-anthracycline left ventricular ejection fraction (LVEF) overall. CONCLUSION In this meta-analysis of RCTs, statins were significantly associated with a lower incidence of anthracycline-induced CTRCD and attenuated changes in the left ventricular end-systolic volume. Thus, our findings suggest that statins should be considered as a cardio-protection strategy for patients with planned anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Nicole Felix
- Federal University of Campina Grande, Campina Grande, Brazil
| | - Paula C Nogueira
- Hospital da Mulher, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
6
|
Das UN. Pyridoxine, essential fatty acids, and protection against doxorubicin-induced cardiotoxicity. J Biochem Mol Toxicol 2024; 38:e23639. [PMID: 38229307 DOI: 10.1002/jbt.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, Washington, USA
- Department of Biotechnology, Indian Institute of Technology, Kandi, Sangareddy, Telangana, India
- Department of Medicine, Omega Hospitals, Gachibowli, 500032, Hyderabad, India
| |
Collapse
|