1
|
Zhang J, Dong T, Zhu M, Du D, Liu R, Yu Q, Sun Y, Zhang Z. Transcriptome- and genome-wide systematic identification of expansin gene family and their expression in tuberous root development and stress responses in sweetpotato ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2024; 15:1412540. [PMID: 38966148 PMCID: PMC11223104 DOI: 10.3389/fpls.2024.1412540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024]
Abstract
Introduction Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dan Du
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ranran Liu
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Qianqian Yu
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Yueying Sun
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Zhihuan Zhang
- Institute of Biotechnology, Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhang J, Wang L, Wu D, Zhao H, Gong L, Xu J. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz. Int J Biol Macromol 2024; 270:132292. [PMID: 38750858 DOI: 10.1016/j.ijbiomac.2024.132292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Expansins, cell wall proteins, play a significant role in plant stress resistance. Our previous study confirmed the expression of the expansin gene SmEXPA13 from Salix matsudana Koidz. enhanced salt tolerance of plants. This report presented an assay that the expression of SmEXPA13 was higher in the salt-resistant willow variety 9901 than in the salt-sensitive variety Yanjiang. In order to understand the possible reasons, a study of the regulation process was conducted. Despite being cloned from both varieties, SmEXPA13 and its promotor showed no significant differences in the structure and sequence. A transcription factor (TF), SmMYB1R1-L, identified through screening the yeast library of willow cDNA, was found to regulate SmEXPA13. Yeast one-hybrid (Y1H) assay confirmed that SmMYB1R1-L could bind to the MYB element at the -520 bp site on the SmEXPA13 promotor. A dual-luciferase reporter assay also demonstrated that SmMYB1R1-L could greatly activate SmEXPA13 expression. The willow calli with over-expression of SmMYB1R1-L exhibited better physiological performance than the wild type under salt stress. Further testing the expression of SmMYB1R1-L displayed it significantly higher in 9901 willow than that in Yanjiang under salt stress. In conclusion, the high accumulation of SmMYB1R1-L in 9901 willow under salt stress led to the high expression of SmEXPA13, resulting in variations in salt stress resistance among willow varieties. The SmMYB1R1-L/SmEXPA13 cascade module in willow offers a new perspective on plant resistance mechanisms.
Collapse
Affiliation(s)
- Junkang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Han Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Longfeng Gong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Hao Y, Chu L, He X, Zhao S, Tang F. PagEXPA1 combines with PagCDKB2;1 to regulate plant growth and the elongation of fibers in Populus alba × Populus glandulosa. Int J Biol Macromol 2024; 268:131559. [PMID: 38631576 DOI: 10.1016/j.ijbiomac.2024.131559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; College of Life and Health, Dalian University, Dalian, Liaoning 116622, China.
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Li Y, Li B, Pang Q, Lou Y, Wang D, Wang Z. Identification and expression analysis of expansin gene family in Salvia miltiorrhiza. Chin Med 2024; 19:22. [PMID: 38311790 PMCID: PMC10838462 DOI: 10.1186/s13020-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regulation of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed. METHODS The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, and SmEXPA2. RESULTS This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis suggested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis of the expression patterns of SmEXP revealed that ABA, Cu2+, and NaCl had regulatory effects on its expression. A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, while SmEXPA2 was located on the cell wall. CONCLUSION For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation for further elucidating its physiological and biological functionality.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, China
| | - Qiyue Pang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Yaoyu Lou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
6
|
Li JL, Li H, Zhao JJ, Yang P, Xiang X, Wei SY, Wang T, Shi YJ, Huang J, He F. Genome-wide identification and characterization of the RZFP gene family and analysis of its expression pattern under stress in Populus trichocarpa. Int J Biol Macromol 2024; 255:128108. [PMID: 37979769 DOI: 10.1016/j.ijbiomac.2023.128108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Forest trees face many abiotic stressors during their lifetime, including drought, heavy metals, high salinity, and chills, affecting their quality and yield. The RING-type ubiquitin ligase E3 is an invaluable component of the ubiquitin-proteasome system (UPS) and participates in plant growth and environmental interactions. Interestingly, only a few studies have explored the RING ZINC FINGER PROTEIN (RZFP) gene family. This study identified eight PtrRZFPs genes in the Populus genome, and their molecular features were analyzed. Gene structure analysis revealed that all PtrRZFPs genes contained >10 introns. Evolutionarily, the RZFPs were separated into four categories, and segmental replication events facilitated their amplification. Notably, many stress-related elements have been identified in the promoters of PtrRZFPs using Cis-acting element analysis. Moreover, some PtrRZFPs were significantly induced by drought and sorbitol, revealing their potential roles in regulating stress responses. Particularly, overexpression of the PtrRZFP1 gene in poplars conferred excellent drought tolerance; however, PtrRZFP1 knockdown plants were drought-sensitive. We identified the potential upstream transcription factors of PtrRZFPs and revealed the possible biological functions of RZFP1/4/7 in resisting osmotic and salt stress, laying the foundation for subsequent biological function studies and providing genetic resources for genetic engineering breeding for drought resistance in forest trees. This study offers crucial information for the further exploration of the functions of RZFPs in poplars.
Collapse
Affiliation(s)
- Jun-Lin Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Jie Shi
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Zhang X, Wang H, Chen Y, Huang M, Zhu S. The Over-Expression of Two R2R3-MYB Genes, PdMYB2R089 and PdMYB2R151, Increases the Drought-Resistant Capacity of Transgenic Arabidopsis. Int J Mol Sci 2023; 24:13466. [PMID: 37686270 PMCID: PMC10487491 DOI: 10.3390/ijms241713466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The R2R3-MYB genes in plants play an essential role in the drought-responsive signaling pathway. Plenty of R2R3-MYB S21 and S22 subgroup genes in Arabidopsis have been implicated in dehydration conditions, yet few have been covered in terms of the role of the S21 and S22 subgroup genes in poplar under drought. PdMYB2R089 and PdMYB2R151 genes, respectively belonging to the S21 and S22 subgroups of NL895 (Populus deltoides × P. euramericana cv. 'Nanlin895'), were selected based on the previous expression analysis of poplar R2R3-MYB genes that are responsive to dehydration. The regulatory functions of two target genes in plant responses to drought stress were studied and speculated through the genetic transformation of Arabidopsis thaliana. PdMYB2R089 and PdMYB2R151 could promote the closure of stomata in leaves, lessen the production of malondialdehyde (MDA), enhance the activity of the peroxidase (POD) enzyme, and shorten the life cycle of transgenic plants, in part owing to their similar conserved domains. Moreover, PdMYB2R089 could strengthen root length and lateral root growth. These results suggest that PdMYB2R089 and PdMYB2R151 genes might have the potential to improve drought adaptability in plants. In addition, PdMYB2R151 could significantly improve the seed germination rate of transgenic Arabidopsis, but PdMYB2R089 could not. This finding provides a clue for the subsequent functional dissection of S21 and S22 subgroup genes in poplar that is responsive to drought.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Haoran Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China;
| | - Ying Chen
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Minren Huang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|