1
|
Degenaar A, Kruger R, Jacobs A, Mels CMC. Phenotyping Kidney Function in Young Adults With High Blood Pressure: The African-PREDICT Study. J Clin Hypertens (Greenwich) 2024; 26:1291-1300. [PMID: 39368068 PMCID: PMC11555542 DOI: 10.1111/jch.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Biomarkers of kidney function, including glomerular, tubular, and fibrotic markers, have been associated with blood pressure in elderly populations and individuals with kidney and cardiovascular diseases. However, limited information is available in young adults. In this study, we compared levels of several kidney function biomarkers between normotensive and hypertensive young adults and explored the associations of these biomarkers with blood pressure within these groups. In this cross-sectional assessment, twenty-four-hour (24-h) blood pressure measurements of 1055 participants (mean age = 24.6 years) were used to classify hypertension as per the 2018 ESC/ESH guidelines. Biomarkers of kidney function included estimated glomerular filtration rate, urinary albumin, alpha-1 microglobulin (uA1M), neutrophil gelatinase-associated lipocalin (uNGAL), uromodulin (uUMOD), and the CKD273 classifier. All urinary biomarkers, except for the CKD273 classifier, were standardized for urinary creatinine (Cr). In the hypertensive group (61.0% White; 73.2% men), urinary albumin-to-creatinine ratio (uACR), uNGAL/Cr and uUMOD/Cr were lower than the normotensive group. In multiple regression analyses, 24-h systolic blood pressure (SBP) (β = 0.14; p = 0.042), 24-h diastolic blood pressure (DBP) (β = 0.14; p = 0.040), and 24-h mean arterial pressure (MAP) (β = 0.16; p = 0.020) associated positively with uA1M/Cr in the hypertensive group, while 24-h MAP positively associated with uACR (β = 0.17; p = 0.017). In exploratory factor analysis, positive associations of 24-h DBP and 24-h MAP with a factor pattern including tubular biomarkers were observed in the hypertensive group (24-h DBP: β = 0.18; p = 0.026, 24-h MAP: β = 0.17; p = 0.032). In the setting of hypertension, high perfusion pressure in the kidneys may play a role in the development of proximal tubule damage and promote early deterioration in kidney function in young adults. Trial Registration: ClinicalTrials.gov identifier: NCT03292094.
Collapse
Affiliation(s)
- Anja Degenaar
- Hypertension in Africa Research Team (HART)North‐West UniversityPotchefstroomSouth Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART)North‐West UniversityPotchefstroomSouth Africa
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North‐West UniversityPotchefstroomSouth Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART)North‐West UniversityPotchefstroomSouth Africa
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North‐West UniversityPotchefstroomSouth Africa
| | - Catharina M. C. Mels
- Hypertension in Africa Research Team (HART)North‐West UniversityPotchefstroomSouth Africa
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
2
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2024:e15447. [PMID: 39460977 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Laura J Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Kwon S, Cheon S, Kim KH, Seo A, Bae E, Lee JW, Cha RH, Hwang JH, Kim YC, Kim DK, Kim YS, Han D, Yang SH. Unveiling the role of transgelin as a prognostic and therapeutic target in kidney fibrosis via a proteomic approach. Exp Mol Med 2024; 56:2296-2308. [PMID: 39375532 PMCID: PMC11542076 DOI: 10.1038/s12276-024-01319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 10/09/2024] Open
Abstract
Chronic kidney disease (CKD) progression involves tubulointerstitial fibrosis, a process characterized by excessive extracellular matrix accumulation. To identify potential biomarkers for kidney fibrosis, we performed mass spectrometry-based proteomic profiling of human kidney tubular epithelial cells and kidney tissue from a 5/6 nephrectomy rat model. Multidisciplinary analysis across kidney fibrosis models revealed 351 differentially expressed proteins associated with kidney fibrosis, and they were enriched in processes related to the extracellular matrix, kidney aging, and mitochondrial functions. Network analysis of the selected proteins revealed five crucial proteins, of which transgelin emerged as a candidate protein that interacts with known fibrosis-related proteins. Concordantly, the gene expression of transgelin in the kidney tissue from the 5/6 nephrectomy model was elevated. Transgelin expression in kidney tissue gradually increased from intermediate to advanced fibrosis stages in 5/6 Nx rats and mice with unilateral ureteral obstruction. Subsequent validation in kidney tissue and urine samples from patients with CKD confirmed the upregulation of transgelin, particularly under advanced disease stages. Moreover, we investigated whether blocking TAGLN ameliorated kidney fibrosis and reduced reactive oxygen species levels in cellular models. In conclusion, our proteomic approach identified TAGLN as a potential noninvasive biomarker and therapeutic target for CKD-associated kidney fibrosis, suggesting its role in modulating mitochondrial dysfunction and oxidative stress responses.
Collapse
Affiliation(s)
- Soie Kwon
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyu-Hong Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Areum Seo
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Gyeongsang University Changwon Hospital, Gyeongsang, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Seung-Hee Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Mavrogeorgis E, Kondyli M, Mischak H, Vlahou A, Siwy J, Rossing P, Campbell A, Mels CMC, Delles C, Staessen JA, Latosinska A, Persu A. Multiple urinary peptides are associated with hypertension: a link to molecular pathophysiology. J Hypertens 2024; 42:1331-1339. [PMID: 38690919 DOI: 10.1097/hjh.0000000000003726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Hypertension is a common condition worldwide; however, its underlying mechanisms remain largely unknown. This study aimed to identify urinary peptides associated with hypertension to further explore the relevant molecular pathophysiology. METHODS Peptidome data from 2876 individuals without end-organ damage were retrieved from the Human Urinary Proteome Database, belonging to general population (discovery) or type 2 diabetic (validation) cohorts. Participants were divided based on systolic blood pressure (SBP) and diastolic BP (DBP) into hypertensive (SBP ≥140 mmHg and/or DBP ≥90 mmHg) and normotensive (SBP <120 mmHg and DBP <80 mmHg, without antihypertensive treatment) groups. Differences in peptide abundance between the two groups were confirmed using an external cohort ( n = 420) of participants without end-organ damage, matched for age, BMI, eGFR, sex, and the presence of diabetes. Furthermore, the association of the peptides with BP as a continuous variable was investigated. The findings were compared with peptide biomarkers of chronic diseases and bioinformatic analyses were conducted to highlight the underlying molecular mechanisms. RESULTS Between hypertensive and normotensive individuals, 96 (mostly COL1A1 and COL3A1) peptides were found to be significantly different in both the discovery (adjusted) and validation (nominal significance) cohorts, with consistent regulation. Of these, 83 were consistently regulated in the matched cohort. A weak, yet significant, association between their abundance and standardized BP was also observed. CONCLUSION Hypertension is associated with an altered urinary peptide profile with evident differential regulation of collagen-derived peptides. Peptides related to vascular calcification and sodium regulation were also affected. Whether these modifications reflect the pathophysiology of hypertension and/or early subclinical organ damage requires further investigation.
Collapse
Affiliation(s)
- Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany
| | | | | | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carina M C Mels
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jan A Staessen
- Research Institute Alliance for the Promotion of Preventive Medicine, Mechelen
| | | | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|