1
|
Liu Y, Zhang H, He M, Li S, Xu Y, Zhen JB. Quaternized chitosan templated MoS 2 nanohybrids for photothermal-enhanced synergistic antibacterial therapy. Int J Biol Macromol 2025; 298:139525. [PMID: 39761887 DOI: 10.1016/j.ijbiomac.2025.139525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025]
Abstract
Bacterial infections have become a fatal issue for human health. The excessive use of antibiotics leads to bacterial resistance. It is of great importance to develop alternate antimicrobial nanomaterials for effective antibacterial therapy. Herein, we developed a simple one-step hydrothermal method to construct the antibacterial nanoplatform based on chitosan quaternary ammonium salt functionalized molybdenum disulfide nanohybrids (MoS2-QCS) with controllable morphology, surface composition, and structure. The photothermal performance of MoS2-QCS nanohybrids can be successfully optimized by regulating the morphology, surface composition, and structure by QCS during hydrothermal synthesis. The optimized MoS₂-QCS nanohybrids demonstrated satisfactory photothermal effects, excellent colloidal stability, and enhanced bacterial adhesion. In vitro experiments verified the synergistic antibacterial efficacy of MoS2-QCS nanohybrids, combining photothermal therapy with QCS to effectively inhibit both Gram-positive and Gram-negative bacteria. The nanohybrids exhibited excellent biocompatibility, indicating the suitability for biomedical applications. In vivo studies demonstrated their potent antibacterial activity against S. aureus, along with accelerated wound healing and enhanced tissue regeneration with minimal inflammatory response. The current work proposed a simple and effective strategy for precisely designing nanoplatforms with controllable morphology, surface composition, and structure for synergistic antimicrobial therapy. These results confirmed the great potential of tailored MoS2-QCS nanohybrids in effective synergistic antibacterial therapy.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; SEM Bio-Engineering Technology Co., Ltd., Dalian 116600, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Henghui Zhang
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Maoyong He
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Shuying Li
- SEM Bio-Engineering Technology Co., Ltd., Dalian 116600, China
| | - Yongping Xu
- SEM Bio-Engineering Technology Co., Ltd., Dalian 116600, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Jian Bin Zhen
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
| |
Collapse
|
2
|
Tu Y, Zheng W, Ding Z, Xiang J, Yang Q, Liu Y, Cao J, Shen Y, Tang Z, Lin S, Fan L, Xu Y, Chen B. Exosome-loaded tannic acid-thioctic acid hydrogel enhances wound healing in coagulation disorders. Mater Today Bio 2025; 31:101496. [PMID: 39990738 PMCID: PMC11846942 DOI: 10.1016/j.mtbio.2025.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
Hemophilia poses distinct challenges to wound healing, primarily due to uncontrolled bleeding and delayed tissue repair. This study explored a novel tannic acid-thioctic acid (TATA) hydrogel, enriched with exosomes derived from bone marrow mesenchymal stem cells, as a therapeutic strategy for enhancing skin wound healing in a hemophilia model. The hydrogel exhibited robust hemostatic efficacy, potent antioxidant activity, and the capacity to modulate the inflammatory microenvironment. Both in vitro and in vivo assessments demonstrated significantly accelerated wound closure, increased collagen deposition, and pronounced angiogenesis in the TATA Hydrogel-Exosome(TATA Hydrogel-Exos) treatment group relative to controls. Rheological evaluations confirmed the self-healing properties and mechanical durability, of the hydrogel, underscoring its potential for sustained therapeutic application. Importantly, no significant systemic toxicity was observed, indicating favorable biocompatibility. These multifunctional TATA Hydrogel-Exos present a promising therapeutic avenue for hemophilia-related wounds by integrating hemostasis, inflammation regulation, and tissue regeneration.
Collapse
Affiliation(s)
- Yuesheng Tu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weixin Zheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zichu Ding
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Xiang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuchen Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jue Cao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuling Shen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zinan Tang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shen Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Xu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Ali A, Ali SR, Hussain R, Anjum R, Liu Q, Elshikh MS, Alkubaisi N, Iqbal R, Tabor S, Gancarz M. Comparative study of silica and silica-decorated ZnO and ag nanocomposites for antimicrobial and photocatalytic applications. Sci Rep 2025; 15:5010. [PMID: 39930080 PMCID: PMC11811131 DOI: 10.1038/s41598-025-89812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
The increasing threat of multi-resistant infectious agents and environmental toxins has led to a demand for new therapeutic and catalytic materials. In this study, C-SiO₂ (crystalline silica), Ag-SiO₂ (silver-silica), and ZnO-SiO₂ (zinc oxide-silica) nanocomposites (NCs) were synthesized through green methods and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These silica-based nanomaterials were investigated as potential photocatalysts for the degradation of p-nitroanilines and their antibacterial and antioxidant properties. XRD analysis showed crystalline sizes of 14 nm for C-SiO₂ NPs, 18 nm for Ag-SiO₂, and 20 nm for ZnO-SiO₂ NCs. UV-visible spectroscopy revealed energy band gaps of 4.5 eV for C-SiO₂ NPs, 3.23 eV for Ag-SiO₂, and 2.84 eV for ZnO-SiO₂. FTIR analysis confirmed the formation of SiO₂ in all samples through the Si-O-Si absorption peak. SEM revealed distinct morphologies: C-SiO₂ NPs as agglomerated granular particles, Ag-SiO₂ NCs as flattened rods or sheets, and ZnO-SiO₂ as roughly spherical. Antimicrobial testing showed that ZnO-SiO₂ and Ag-SiO₂ NCs exhibited 80% and 88% antimicrobial activity against Escherichia coli and Pseudomonas, with Ag-SiO₂ also demonstrating strong activity against Staphylococcus. The minimum inhibitory concentration (MIC) of Ag-SiO₂ and ZnO-SiO₂ NCs was found to be 80%, outperforming C-SiO₂ NPs. Antioxidant activity assays showed scavenging efficiencies of 45%, 57.8%, and 71% for C-SiO₂, Ag-SiO₂, and ZnO-SiO₂ NCs, respectively, at 30 mg/ml. ZnO-SiO₂ NCs also achieved a 75% degradation rate for p-nitroanilines, while Ag-SiO₂ achieved 45%. This study demonstrates that ZnO-SiO₂ and Ag-SiO₂ NCs are effective materials for disinfection and pollutant degradation, offering an eco-friendly solution for environmental and health challenges.
Collapse
Affiliation(s)
- Arooj Ali
- Institute of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Syed Raza Ali
- Institute of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Rashida Anjum
- Institute of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Qiang Liu
- Faulty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Noorah Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Sylwester Tabor
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland.
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
- Center for Innovation and Research on Pro-Healthy and Safe Food, University of Agriculture in Kraków, Balicka 104, Kraków, 30-149, Poland.
| |
Collapse
|
4
|
Ge H, Wang M, Wei X, Chen XL, Wang X. Copper-Based Nanozymes: Potential Therapies for Infectious Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407195. [PMID: 39757568 DOI: 10.1002/smll.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Bacterial infections are a significant obstacle to the healing of acute and chronic wounds, such as diabetic ulcers and burn injuries. Traditional antibiotics are the primary treatment for bacterial infections, but they present issues such as antibiotic resistance, limited efficacy, and potential side effects. This challenge leads to the exploration of nanozymes as alternative therapeutic agents. Nanozymes are nanomaterials with enzyme-like activities. Owing to their low production costs, high stability, scalability, and multifunctionality, nanozymes have emerged as a prominent focus in antimicrobial research. Among various types of nanozymes, metal-based nanozymes offer several benefits, including broad-spectrum antimicrobial activity and robust catalytic properties. Specifically, copper-based nanozymes (CuNZs) have shown considerable potential in promoting wound healing. They exhibit strong antimicrobial effects, reduce inflammation, and enhance tissue regeneration, making them highly advantageous for use in wound care. This review describes the dual functions of CuNZs in combating infection and facilitating wound repair. Recent advancements in the design and synthesis of CuNZs, evaluating their antimicrobial efficacy, healing promotion, and biosafety both in vitro and in vivo on the basis of their core components, are critically important.
Collapse
Affiliation(s)
- Haojie Ge
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xianwen Wang
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
5
|
Bai Y, Li X, Wu K, Heng BC, Zhang X, Deng X. Biophysical stimuli for promoting bone repair and regeneration. MEDICAL REVIEW (2021) 2025; 5:1-22. [PMID: 39974560 PMCID: PMC11834751 DOI: 10.1515/mr-2024-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 02/21/2025]
Abstract
Bone injuries and diseases are associated with profound changes in the biophysical properties of living bone tissues, particularly their electrical and mechanical properties. The biophysical properties of healthy bone are attributed to the complex network of interactions between its various cell types (i.e., osteocytes, osteoclast, immune cells and vascular endothelial cells) with the surrounding extracellular matrix (ECM) against the backdrop of a myriad of biomechanical and bioelectrical stimuli arising from daily physical activities. Understanding the pathophysiological changes in bone biophysical properties is critical to developing new therapeutic strategies and novel scaffold biomaterials for orthopedic surgery and tissue engineering, as well as provides a basis for the application of various biophysical stimuli as therapeutic agents to restore the physiological microenvironment of injured/diseased bone tissue, to facilitate its repair and regeneration. These include mechanical, electrical, magnetic, thermal and ultrasound stimuli, which will be critically examined in this review. A significant advantage of utilizing such biophysical stimuli to facilitate bone healing is that these may be applied non-invasively with minimal damage to surrounding tissues, unlike conventional orthopedic surgical procedures. Furthermore, the effects of such biophysical stimuli can be localized specifically at the bone defect site, unlike drugs or growth factors that tend to diffuse away after delivery, which may result in detrimental side effects at ectopic sites.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon C. Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
6
|
Zhang Q, Jiang Y, He X, Liu L, Zhang X. Study of an arginine- and tryptophan-rich antimicrobial peptide in peri-implantitis. Front Bioeng Biotechnol 2025; 12:1486213. [PMID: 39840136 PMCID: PMC11747041 DOI: 10.3389/fbioe.2024.1486213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone. This study found through antibacterial experiments, wound healing promotion experiments, and anti-inflammatory experiments that VR-12 inhibited and killed planktonic peri-implantitis-associated bacteria, inhibited biofilm formation, and disrupted mature biofilms. Additionally, VR-12 exhibited good biocompatibility with RAW264.7 cells and human gingival fibroblasts (HGFs) cells, promoting proliferation of both cell types. Moreover, VR-12 induced HGFs migration by promoting expression of migration-related factors, thereby promoting soft tissue healing. VR-12 also acted on lipopolysaccharide (LPS)-induced RAW264.7 cells, exerting excellent anti-inflammatory properties by affecting the secretion/expression of inflammation-related factors/genes. Therefore, VR-12 may be a good option for both warding off and treatmenting peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Yalei Jiang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Xiaotong He
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Liwei Liu
- Department of Periodontology, Tianjin Binhai New Area Tanggu Stomatology Hospital, Tianjin, China
| | - Xi Zhang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Zhao Y, Zhan K, Geng P, Jiang S. Polydopamine-assisted decoration of silver nanoparticles on gold nanorods for photothermal and chemical antimicrobial applications. NEW J CHEM 2025; 49:624-631. [DOI: 10.1039/d4nj04434g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AuNRs@PDA@AgNPs were prepared by assembling AgNPs on AuNRs with the assistance of PDA, realizing synergistic photothermal and chemical sterilization.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ke Zhan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Pengshan Geng
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shan Jiang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Wu G, Xu Z, Yu Y, Zhang M, Wang S, Duan S, Liu X. Biomaterials-based phototherapy for bacterial infections. Front Pharmacol 2024; 15:1513850. [PMID: 39697551 PMCID: PMC11652144 DOI: 10.3389/fphar.2024.1513850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Bacterial infections and antibiotic resistance are global health problems, and current treatments for bacterial infections still rely on the use of antibiotics. Phototherapy based on the use of a photosensitizer has high efficiency, a broad spectrum, strong selectivity, does not easily induce drug resistance, and is expected to become an effective strategy for the treatment of bacterial infections, particularly drug-resistant infections. This article reviews antimicrobial strategies of phototherapy based on photosensitizers, including photodynamic therapy (PDT), photothermal therapy (PTT), and their combination. These methods have significant application potential in combating multi-drug-resistant bacterial and biofilm infections, providing an alternative to traditional antibiotics and chemical antibacterial agents.
Collapse
Affiliation(s)
- Guangzhi Wu
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Yu
- Department of Infectious Diseases, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Minglei Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuaishuai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Duan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Eker F, Akdaşçi E, Duman H, Bechelany M, Karav S. Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1854. [PMID: 39591094 PMCID: PMC11597456 DOI: 10.3390/nano14221854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| |
Collapse
|
10
|
Talaat M. Biologically synthesized nanoparticles: barley-mediated silver and gold nanoparticles and caged gold nanoplatform for advanced drug delivery system engineering in medicine. DISCOVER NANO 2024; 19:167. [PMID: 39375276 PMCID: PMC11458901 DOI: 10.1186/s11671-024-04097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024]
Abstract
The integration of green synthesis methods and advanced nanostructure designs holds significant promise for the development of innovative nanomaterials with diverse biomedical applications. This commentary delves into the use of barley grains for the eco-friendly synthesis of silver and gold nanoparticles, highlighting their potential as biocompatible agents with potent antibacterial properties. The barley-mediated synthesis approach not only offers a sustainable and cost-effective method for producing these nanoparticles but also underscores their remarkable efficacy against pathogenic bacteria. The barley-mediated approach not only offers a sustainable and cost-effective method for producing biocompatible nanoparticles but also demonstrates remarkable antibacterial efficacy against pathogenic bacteria. By critically evaluating the strengths and potential gaps in this synthesis approach, this commentary emphasizes the importance of integrating green synthesis techniques with advanced nanoparticle applications. Future research directions should aim at optimizing synthesis processes, ensuring enhanced stability and biocompatibility, and exploring the full potential of biologically synthesized nanoparticles in medical treatments and environmental sustainability. This focus on sustainable synthesis and application could pave the way for the next generation of nanomaterials, offering significant advancements in both healthcare and ecological preservation. By examining the strengths, gaps, and potential synergies between these two approaches, this commentary underscores the importance of sustainable synthesis techniques and the development of multifunctional nanoparticles. This integrated approach could lead to the creation of next-generation nanomaterials, offering significant advancements in medical treatments and environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Talaat
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- El Demerdash Hospital, Ain Shams University, Cairo, Egypt.
- R&D Department, BRAND For Pharmaceutical Industries, Giza, Egypt.
| |
Collapse
|
11
|
Ferreira de Oliveira GM, Lima Pedrosa TD, de Araujo RE. Near infrared photothermal inactivation of Candida albicans assisted by plasmonic nanorods. Photodiagnosis Photodyn Ther 2024; 49:104309. [PMID: 39154922 DOI: 10.1016/j.pdpdt.2024.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The use of photothermal processes has been proven effective in the control of microbial infections. Simultaneously, the localized surface plasmon resonance phenomena in metallic nanoparticles have been explored as an alternative strategy to achieve highly efficient localized heating. In this work, we propose the use of selected nanoheaters to improve the efficiency of fungal photothermal inactivation of Candida albicans through size optimization of plasmonic gold nanorods. Here, the optical heating of polyethylene glycol coated gold nanorods of varying sizes is evaluated, both theoretically and experimentally. A size-dependent computational approach was applied to identify metallic nanorods with maximized thermal performance at 800 nm, followed by the experimental comparison of optimal and suboptimal nanoheaters. Comparison among samples show temperatures of up to 53.0 °C for 41×10 nm gold nanorods against 32.3 °C for 90×25 nm, a percentage increase of ∼63% in photothermal inactivation assessments. Our findings reveal that gold nanorods of 41×10 nm exhibit superior efficiency in near-infrared (800 nm) photothermal inactivation of fungi, owing to their higher light-thermal conversion efficiency. The identification of high performance metallic nanoheaters may lead to the reduction of the nanoparticle dose used in plasmonic-based procedures and decrease the laser exposure time needed to induce cell death. Moreover, our results provide insights to better exploit plasmonic nanoparticles on photothermal inactivation protocols.
Collapse
Affiliation(s)
- Gabrielli Maria Ferreira de Oliveira
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Av. da Arquitetura Recife, Pernambuco, 50740-550, Brazil; Department of Nuclear Energy, Federal University of Pernambuco, Av. Prof. Luiz Freire, 1000 Recife, Pernambuco, 50740-545, Brazil
| | - Túlio de Lima Pedrosa
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Av. da Arquitetura Recife, Pernambuco, 50740-550, Brazil
| | - Renato Evangelista de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Av. da Arquitetura Recife, Pernambuco, 50740-550, Brazil.
| |
Collapse
|
12
|
Gu Y, You Y, Yang Y, Liu X, Yang L, Li Y, Zhang C, Yang H, Sha Z, Ma Y, Pang Y, Liu Y. Multifunctional EGCG@ZIF-8 Nanoplatform with Photodynamic Therapy/Chemodynamic Therapy Antibacterial Properties Promotes Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50238-50250. [PMID: 39284745 DOI: 10.1021/acsami.4c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Damaged skin is susceptible to invasion by harmful microorganisms, especially Staphylococcus aureus and Escherichia coli, which can delay healing. Epigallocatechin-3-gallate (EGCG) is a natural compound known for effectively promoting wound healing and its potent anti-inflammatory effects. However, its application is limited due to its susceptibility to oxidation and isomerization, which alter its structure. The use of zeolitic imidazolate framework-8 (ZIF-8) can effectively tackle these issues. This study introduces an oxygen (O2) and hydrogen peroxide (H2O2) self-supplying ZIF-8 nanoplatform designed to enhance the bioavailability of EGCG, combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) to improve antibacterial properties and ultimately accelerate wound healing. For this purpose, EGCG and indocyanine green (ICG), a photosensitizer, were successively integrated into a ZIF-8, and coated with bovine serum albumin (BSA) to enhance biocompatibility. The outer layer of this construct was further modified with manganese dioxide (MnO2) to promote CDT and calcium peroxide (CaO2) to supply H2O2 and O2, resulting in the final nanoplatform EGCG-ICG@ZIF-8/BSA-MnO2/CaO2 (EIZBMC). In in vitro experiments under 808 nm laser, EIZBMC exhibited synergistic antibacterial effects through PDT and CDT. This combination effectively released reactive oxygen species (ROS), which mediated oxidative stress to inhibit the bacteria. Subsequently, in a murine model of wound infection, EIZBMC not only exerted antibacterial effects through PDT and CDT but also alleviated the inflammatory condition and promoted the regeneration of collagen fibers, which led to accelerated wound healing. Overall, this research presents a promising approach to enhancing the therapeutic efficacy of EGCG by leveraging the synergistic antibacterial effects of PDT and CDT. This multifunctional nanoplatform maximizes EGCG's anti-inflammatory properties, offering a potent solution for promoting infected wound healing.
Collapse
Affiliation(s)
- Yufan Gu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin You
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yijia Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xinyi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Luyuan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanzhu Li
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chaoyi Zhang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ziqi Sha
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Youzhen Ma
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yipeng Pang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
13
|
Pistonesi DB, Belén F, Ruso JM, Centurión ME, Sica MG, Pistonesi MF, Messina PV. NIR-responsive nano-holed titanium alloy surfaces: a photothermally activated antimicrobial biointerface. J Mater Chem B 2024; 12:8993-9004. [PMID: 39145426 DOI: 10.1039/d4tb01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.
Collapse
Affiliation(s)
- Denise B Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Federico Belén
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and iMATUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenia Centurión
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - M Gabriela Sica
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
- Department of Health Sciences, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
| | - Marcelo F Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Paula V Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Yan S, Xu S, Wang Y, You J, Guo C, Wu X. A Hydrogel Dressing Comprised of Silk Fibroin, Ag Nanoparticles, and Reduced Graphene Oxide for NIR Photothermal-Enhanced Antibacterial Efficiency and Skin Regeneration. Adv Healthc Mater 2024; 13:e2400884. [PMID: 38701326 DOI: 10.1002/adhm.202400884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Bacterial infection, inflammation, and excessive oxidative stress are the primary factors that contribute to delayed healing of skin wounds. In this study, a multifunctional wound dressing (SF/Ag@rGO hydrogel) is developed to promote the healing of infected skin wounds by combining the inherent antibacterial activity of Ag nanoparticles (NPs) with near-infrared (NIR)-assisted antibacterial therapy. Initially, L-ascorbic acid is used as a reducing agent and PVP-K17 as a stabilizer and dispersant, this facilitates the synthesis of reduced graphene oxide loaded with Ag NPs (Ag@rGO). Ag@rGO is then blended with a silk fibroin (SF) solution to form an instantly gelling SF/Ag@rGO hydrogel that exhibits rapid self-healing, injectability, shape adaptability, NIR responsiveness, antioxidant, high tissue adhesion, and robust mechanical properties. In vitro and in vivo experiments show that the SF/Ag@rGO hydrogel demonstrates strong antioxidant and photothermal antibacterial capabilities, promoting wound healing through angiogenesis, stimulating collagen generation, alleviating inflammation, antioxidant, and promoting cell proliferation, indicating that the SF/Ag@rGO hydrogel dressing is an ideal candidate for clinical treatment of full-thickness bacterial-stained wounds.
Collapse
Affiliation(s)
- Shaorong Yan
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuo Xu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yu Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun You
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
15
|
Zhao K, Hu Z, Chen X, Chen Y, Zhou M, Ye X, Zhou F, Zhu B, Ding Z. Bletilla striata Polysaccharide-/Chitosan-Based Self-Healing Hydrogel with Enhanced Photothermal Effect for Rapid Healing of Diabetic Infected Wounds via the Regulation of Microenvironment. Biomacromolecules 2024; 25:3345-3359. [PMID: 38700942 DOI: 10.1021/acs.biomac.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| |
Collapse
|
16
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
17
|
Chen F, Liu L, Tang D, Zhang H, Wu N, Wang L, Li H, Xiao H, Zhou D. Treatment of Acute Wound Infections by Degradable Polymer Nanoparticle with a Synergistic Photothermal and Chemodynamic Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309624. [PMID: 38408124 PMCID: PMC11077640 DOI: 10.1002/advs.202309624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 02/28/2024]
Abstract
Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.
Collapse
Affiliation(s)
- Fangzhou Chen
- Graduate SchoolGuangzhou Medical UniversityGuangzhou511436P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lin Liu
- Department of StomatologyThe First Medical CenterChinese PLA General HospitalBeijing100853P. R. China
| | - Dongsheng Tang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Hanchen Zhang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Hongbo Li
- Department of StomatologyThe First Medical CenterChinese PLA General HospitalBeijing100853P. R. China
| | - Haihua Xiao
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| |
Collapse
|
18
|
Busila M, Musat V, Alexandru P, Romanitan C, Brincoveanu O, Tucureanu V, Mihalache I, Iancu AV, Dediu V. Antibacterial and Photocatalytic Activity of ZnO/Au and ZnO/Ag Nanocomposites. Int J Mol Sci 2023; 24:16939. [PMID: 38069261 PMCID: PMC10706707 DOI: 10.3390/ijms242316939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In this study, two composites ZnO/Au (1% wt.) and ZnO/Ag (1% wt.) were synthesized by simple aqueous solution methods. The structure and morphology of the r nanocomposites were analyzed by structural and optical characterization methods. The formation of AuNPs and AgNPs in these experiments was also discussed. The antimicrobial properties of ZnO, ZnO/Au, and ZnO/Ag nanomaterials were investigated against Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). The results showed an increase of 80% in the antimicrobial activity of ZnO/Au against Pseudomonas aeruginosa compared with 30% in the case of ZnO/Ag. Similarly, in the case of the S. aureus strain tests, ZnO/Au increased the antimicrobial activity by 55% and ZnO/Ag by 33%. The photocatalytic tests indicated an improvement in the photocatalytic degradation of methylene blue (MB) under UV irradiation using ZnO/Au and ZnO/Ag nanocomposites compared to bare ZnO. The photocatalytic degradation efficiency of ZnO after 60 min of UV irradiation was ∼83%, while the addition of AuNPs enhanced the degradation rate to ∼95% (ZP2), and AgNP presence enhanced the efficiency to ∼98%. The introduction of noble metallic nanoparticles into the ZnO matrix proved to be an effective strategy to increase their antimicrobial activity against P. aeruginosa and S. aureus, and their photocatalytic activity was evaluated through the degradation of MB dye. Comparing the enhancing effects of Au and Ag, it was found that ZnO/Au was a better antimicrobial agent while ZnO/Ag was a more effective photocatalyst under UV irradiation.
Collapse
Affiliation(s)
- Mariana Busila
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Viorica Musat
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Petrica Alexandru
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Cosmin Romanitan
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Oana Brincoveanu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Vasilica Tucureanu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Iuliana Mihalache
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Alina-Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Medical Laboratory Department, Clinical Hospital for Infectious Diseases “Sf. Cuvioasa Parascheva”, 800179 Galati, Romania
| | - Violeta Dediu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| |
Collapse
|
19
|
El Fadl FIA, Hegazy DE, Maziad NA, Ghobashy MM. Effect of nano-metal oxides (TiO 2, MgO, CaO, and ZnO) on antibacterial property of (PEO/PEC-co-AAm) hydrogel synthesized by gamma irradiation. Int J Biol Macromol 2023; 250:126248. [PMID: 37562465 DOI: 10.1016/j.ijbiomac.2023.126248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO2 and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD600) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD600 values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO2-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.
Collapse
Affiliation(s)
- Faten Ismail Abou El Fadl
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.
| | - Dalia E Hegazy
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Nabila A Maziad
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.
| |
Collapse
|
20
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|