1
|
Das TK, Jesionek M, Mistewicz K, Nowacki B, Kępińska M, Zubko M, Godzierz M, Gawron A. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI 3 into BiOI Nanoflakes for Photocatalytic Applications. Int J Mol Sci 2024; 25:10265. [PMID: 39408604 PMCID: PMC11476912 DOI: 10.3390/ijms251910265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
This work describes a novel method for converting bismuth triiodide (BiI3) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI3 microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Marcin Jesionek
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Krystian Mistewicz
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Bartłomiej Nowacki
- Department of Industrial Informatics, Faculty of Materials Science, Joint Doctorate School, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland;
| | - Mirosława Kępińska
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Maciej Zubko
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A St., 41-500 Chorzów, Poland;
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowskiej St., 41-800 Zabrze, Poland; (M.G.); (A.G.)
| | - Anna Gawron
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowskiej St., 41-800 Zabrze, Poland; (M.G.); (A.G.)
| |
Collapse
|
2
|
Manya BS, Kumar MRP, Rajagopal K, Hassan MA, Rab SO, Alshehri MA, Emran TB. Insights into the Biological Activities and Substituent Effects of Pyrrole Derivatives: The Chemistry-Biology Connection. Chem Biodivers 2024; 21:e202400534. [PMID: 38771305 DOI: 10.1002/cbdv.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.
Collapse
Affiliation(s)
- B S Manya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - M R Pradeep Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Md Abul Hassan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
3
|
Prakash C, Singh R. Microwave‐Assisted Synthesis of Fluorinated 5‐Membered Nitrogen Heterocycles. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 01/11/2025]
Abstract
AbstractThe fluorinated 5‐membered N‐containing heterocyclic compounds have wide utility in varied fields. The importance of these compounds has encouraged researchers to explore environment‐friendly synthetic techniques for their synthesis. In this context, microwave‐assisted synthesis has proved beneficial for the synthesis of fluorinated 5‐membered N‐heterocycles in an environmentally benign and energy‐efficient manner. Compared to conventional heating, it offers several advantages, including quick heating, short reaction times, higher yields, and fewer side reactions. This article highlights the microwave‐assisted fluorination of 5‐membered N‐heterocyclic compounds along with the synthesis of fluorinated 5‐membered N‐heterocyclic compounds using fluorinated starting materials.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Applied Chemistry Delhi Technological University Delhi India
- Centre for Fire, Explosive and Environment Safety, DRDO, Timarpur Delhi 110054 India
| | - Ram Singh
- Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
4
|
Prakash C, Singh R. Synthesis of fluorinated six-membered nitrogen heterocycles using microwave irradiation. Chem Heterocycl Compd (N Y) 2024; 60:216-229. [DOI: 10.1007/s10593-024-03323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 01/11/2025]
|
5
|
Ramirez G, Tesfatsion TT, Docampo-Palacios ML, Cruces I, Hellmann AJ, Okhovat A, Pittiglio MK, Ray KP, Cruces W. Ultrasonic or Microwave Modified Continuous Flow Chemistry for the Synthesis of Tetrahydrocannabinol: Observing Effects of Various Solvents and Acids. ACS OMEGA 2024; 9:13191-13199. [PMID: 38524441 PMCID: PMC10956408 DOI: 10.1021/acsomega.3c09794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Synthesizing tetrahydrocannabinol is a lengthy process with minimal yields and little applicability on an industrial scale. To close the gap between bench chemistry and industry process chemistry, this paper introduces a small-scale flow chemistry method that utilizes a microwave or ultrasonic medium to produce major tetrahydrocannabinol isomers. This process produces excellent yields and minimal side products, which leads to more efficient large-scale production of the desired cannabinoids.
Collapse
Affiliation(s)
| | | | - Maite L. Docampo-Palacios
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Ivan Cruces
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Adam J. Hellmann
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Alex Okhovat
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Monica K. Pittiglio
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Kyle P. Ray
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| | - Westley Cruces
- Colorado Chromatography
Laboratories, 10505 S.
Progress Way Unit 105, Parker, Colorado 80134, United States
| |
Collapse
|