1
|
Esworthy RS. Evaluation of the Use of Cell Lines in Studies of Selenium-Dependent Glutathione Peroxidase 2 (GPX2) Involvement in Colorectal Cancer. Diseases 2024; 12:207. [PMID: 39329876 PMCID: PMC11431474 DOI: 10.3390/diseases12090207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Hydroperoxides (ROOHs) are known as damaging agents capable of mediating mutation, while a role as signaling agents through oxidation of protein sulfhydryls that can alter cancer-related pathways has gained traction. Glutathione peroxidase 2 (GPX2) is an antioxidant enzyme that reduces ROOHs at the expense of glutathione (GSH). GPX2 is noted for a tendency of large increases or decreases in expression levels during tumorigenesis that leads to investigators focusing on its role in cancer. However, GPX2 is only one component of multiple enzyme families that metabolize ROOH, and GPX2 levels are often very low in the context of these other ROOH-reducing activities. Colorectal cancer (CRC) was selected as a case study for examining GPX2 function, as colorectal tissues and cancers are sites where GPX2 is highly expressed. A case can be made for a significant impact of changes in expression levels. There is also a link between GPX2 and NADPH oxidase 1 (NOX1) from earlier studies that is seldom addressed and is discussed, presenting data on a unique association in colon and CRC. Tumor-derived cell lines are quite commonly used for pre-clinical studies involving the role of GPX2 in CRC. Generally, selection for this type of work is limited to identifying cell lines based on high and low GPX2 expression with the standard research scheme of overexpression in low-expressing lines and suppression in high-expressing lines to identify impacted pathways. This overlooks CRC subtypes among cell lines involving a wide range of gene expression profiles and a variety of driver mutation differences, along with a large difference in GPX2 expression levels. A trend for low and high GPX2 expressing cell lines to segregate into different CRC subclasses, indicated in this report, suggests that choices based solely on GPX2 levels may provide misleading and conflicting results by disregarding other properties of cell lines and failing to factor in differences in potential protein targets of ROOHs. CRC and cell line classification schemes are presented here that were intended to assist workers in performing pre-clinical studies but are largely unnoted in studies on GPX2 and CRC. Studies are often initiated on the premise that the transition from normal to CRC is associated with upregulation of GPX2. This is probably correct. However, the source normal cells for CRC could be almost any colon cell type, some with very high GPX2 levels. These factors are addressed in this study.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Liu X, An J, Wang Q, Jin H. Characterization and validation of a prognostic model for the N6-methyladenosine-associated ferroptosis gene in colon adenocarcinoma. Transl Cancer Res 2024; 13:4389-4407. [PMID: 39262465 PMCID: PMC11384320 DOI: 10.21037/tcr-24-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 09/13/2024]
Abstract
Background According to statistics, colon adenocarcinoma (COAD) ranks third in global incidence and second in mortality. The role of N6-methyladenosine (m6A) modification-dependent ferroptosis in tumor development and progression is gaining attention. Therefore, it is meaningful to explore the biological functions mediated by m6A ferroptosis related genes (m6A-Ferr-RGs) in the prognosis and treatment of COAD. This study aimed to explore the regulatory mechanisms and prognostic features of m6A-Ferr-RGs in COAD based on the COAD transcriptome dataset. Methods The expression data of Ferr-RGs and the correlated analysis with prognosis related m6A regulators were conducted to obtain candidate m6A-Ferr-RGs. Then, the differentially expressed genes (DEGs) between COAD and normal samples were intersected with candidate m6A-Ferr-RGs to obtain differentially expressed m6A Ferr-RGs (DE-m6A-Ferr-RGs) in COAD. Cox regression analyses were performed to establish risk model and validated in the GSE17538 and GSE41258 datasets. The nomogram was constructed and verified by calibration curves. Moreover, tumor immune dysfunction and exclusion (TIDE) was used to assess immunotherapy response in two risk groups. Finally, the expression of m6A-Ferr-related prognostic genes was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results In total, 6 model genes (HSD17B11, VEGFA, CXCL2, ASNS, FABP4, and GPX2) were obtained to construct the risk model. The nomogram was established based on the independent prognostic factors for predicting survival of COAD. TIDE assessed that the high-risk group suffered from greater immune resistance. Ultimately, the experimental results confirmed that the expression trends of all model genes were consistent among data from public database. Conclusions In this study, m6A-Ferr-related prognostic model for COAD was constructed using transcriptome data and clinical data of COAD in public database, which may have potential immunotherapy and chemotherapy guidance implications.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxuan An
- Department of General Practice, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Qi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyong Jin
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Madej M, Kruszniewska-Rajs C, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Chrobak E, Bębenek E, Boryczka S, Głuszek S, Adamska J, Kubica S, Matykiewicz J, Gola JM. The Influence of Betulin and Its Derivatives on Selected Colorectal Cancer Cell Lines' Viability and Their Antioxidant Systems. Cells 2024; 13:1368. [PMID: 39195258 DOI: 10.3390/cells13161368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Oxidative stress is considered one of the main reasons for the development of colorectal cancer (CRC). Depending on the stage of the disease, variable activity of the main antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), is observed. Due to limited treatment methods for CRC, new substances with potential antitumor activity targeting pathways related to oxidative stress are currently being sought, with substances of natural origin, including betulin, leading the way. The betulin molecule is chemically modified to obtain new derivatives with improved pharmacokinetic properties and higher biological activity. The aim of this study was to evaluate the effects of betulin and its new derivatives on viability and major antioxidant systems in colorectal cancer cell lines. The study showed that betulin and its derivative EB5 affect the antioxidant enzyme activity to varying degrees at both the protein and mRNA levels. The SW1116 cell line is more resistant to the tested compounds than RKO, which may be due to differences in the genetic and epigenetic profiles of these lines.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sebastian Kubica
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jarosław Matykiewicz
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
5
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Michalski M, Klymenko O, Matysiak N, Janelt K, Czuba Z. Glutathione Reductase Expression and Its Prognostic Significance in Colon Cancer. Int J Mol Sci 2024; 25:1097. [PMID: 38256170 PMCID: PMC10816751 DOI: 10.3390/ijms25021097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Maintaining a balanced redox state within cells is crucial for the sustenance of life. The process involves continuous cytosolic disulfide reduction reactions to restore oxidized proteins to their reduced thiol forms. There are two main cellular antioxidant pathways-the thioredoxin (Trx) and glutathione (GSH)/glutaredoxin (Grx) systems. In the GSH/Grx system, glutathione reductase (GR; GSR) catalyses the reduction of GSH disulfide (GSSG) to its sulfhydryl form (GSH), which can then further reduce oxidized Grxs. GR is an essential enzyme that helps in maintaining the supply of reduced glutathione-GSH, which is a significant reducing thiol found in most cells and known for its antioxidant properties. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of GR protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of GR and tumour histological grade, depth of invasion, regional lymph node involvement, staging, and PCNA immunohistochemical expression. It was found that 95% of patients with stage I had low levels of GR expression, whereas 89% of patients with stage III had high levels of immunohistochemical expression. A high level of expression was also detected in the patients with stage II of the disease, where almost 63% were characterized by a high expression of GR. The Western blot method revealed that the highest level of expression was found in the LS 174T cell line, which corresponds to stage II. The results of our study indicate that the immunohistochemical expression of GR may act as an independent prognostic factor associated with colon adenocarcinoma patients' prognosis.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Zabrze Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Olesya Klymenko
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
6
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Janelt K, Matysiak N. Glutaredoxin 2 Protein (Grx2) as an Independent Prognostic Factor Associated with the Survival of Colon Adenocarcinoma Patients. Int J Mol Sci 2024; 25:1060. [PMID: 38256132 PMCID: PMC10816802 DOI: 10.3390/ijms25021060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can catalyze the oxidation and S-glutathionylation of membrane-bound thiol proteins in mitochondria. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of Grx2 protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of Grx2 and tumor histological grade, depth of invasion, regional lymph node involvement, angioinvasion, staging, and PCNA immunohistochemical expression. It was found that 87% of patients with stage I had high levels of Grx2 expression. In contrast, only 33% of patients with stage II and 1% of patients with stage III had high levels of Grx2 expression. Moreover, the multivariate analysis revealed that the immunohistochemical expression of Grx2 protein apart from the grade of tumor differentiation was an independent prognostic factors for the survival of patients with colon adenocarcinoma. Studies analyzing Grx2 levels in patients' blood confirmed that the highest levels of serum Grx2 protein was also found in stage I patients, which was reflected in the survival curves. A higher level of Grx2 in the serum has been associated with a more favorable outcome. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western Blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
- Zabrze Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed-Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| |
Collapse
|
7
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Matysiak N, Czuba Z. A Prognostic Activity of Glutaredoxin 1 Protein (Grx1) in Colon Cancer. Int J Mol Sci 2024; 25:1007. [PMID: 38256082 PMCID: PMC10816104 DOI: 10.3390/ijms25021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|