1
|
Deng ZA, Wu M, Shen C, Yang X, Wang D, Li J, Wu D, Chen K. Microfluidic-blow-spinning of carvacrol-loaded porphyrin metal - organic framework nanofiber films with synergistic antibacterial capabilities for food packaging. Food Chem 2024; 460:140707. [PMID: 39111037 DOI: 10.1016/j.foodchem.2024.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
The adherence of foodborne microorganisms threatens human health, necessitating the development of antibacterial food packaging films. In this study, the antibacterial agent carvacrol (CV), hindered by its high volatility and intense aromatic odor, was encapsulated within the photosensitive metal-organic frameworks (MOFs) material PCN-224 (loading rate 50%). Subsequently, the microfluidic-blow-spinning (MBS) technique was employed for the rapid fabrication of CV@PCN-224/polycaprolactone (PCL)/chitosan (CS) nanofiber films. The incorporation of CV@PCN-224 NPs enhances the nanofiber films' thermal stability and mechanical properties and improves the water vapor permeability while maintaining the sustained release of CV over an extended period and good biocompatibility. Due to the simultaneous loading of antibacterial agent (CV) and photosensitive agent (PCN-224), the CV@PCN-224/PCL/CS films exhibited good synergistic antibacterial functionality, as demonstrated by effective inhibition against both E. coli and S. aureus. All results show the vast potential of the prepared nanofiber films in antibacterial food packaging.
Collapse
Affiliation(s)
- Zi-An Deng
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Menglu Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Da Wang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Jiangkuo Li
- Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, PR China
| | - Di Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
2
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
3
|
Lin B, Gao B, Wei M, Li S, Zhou Q, He B. Overexpressed Artificial Spidroin Based Microneedle Spinneret for 3D Air Spinning of Hybrid Spider Silk. ACS NANO 2024; 18:25778-25794. [PMID: 39222009 DOI: 10.1021/acsnano.4c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts have been devoted to developing strategies for converting spider silk proteins (spidroins) into functional silk materials. However, studies mimicking the exact natural spinning process of spiders encounter arduous challenges. In this paper, consistent with the natural spinning process of spiders, we report a high-efficient spinning strategy that enables the mass preparation of multifunctional artificial spider silk at different scales. By simulating the structural stability mechanism of the cross-β-spine of the amyloid polypeptide by computer dynamics, we designed and obtained an artificial amyloid spidroin with a significantly increased yield (13.5 g/L). Using the obtained artificial amyloid spidroin, we fabricated artificial spiders with artificial spinning glands (hollow MNs). Notably, by combining artificial spiders with 3D printing, we perform patterned air spinning at the macro- and microscales, and the resulting patterned artificial spider silk has excellent pump-free liquid flow and conductive and frictional electrical properties. Based on these findings, we used macroscale artificial spider silk to treat rheumatoid arthritis in mice and micro artificial spider silk to prepare wound dressings for diabetic mice. We believe that artificial spider silk based on an exact spinning strategy will provide a high-efficient way to construct and modulate the next generation of smart materials.
Collapse
Affiliation(s)
- Baoyang Lin
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuhuan Li
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Łopianiak I, Kawecka A, Civelek M, Wojasiński M, Cicha I, Ciach T, Butruk-Raszeja BA. Characterization of Blow-Spun Polyurethane Scaffolds-Influence of Fiber Alignment and Fiber Diameter on Pericyte Growth. ACS Biomater Sci Eng 2024; 10:4388-4399. [PMID: 38856968 PMCID: PMC11234331 DOI: 10.1021/acsbiomaterials.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
- Doctoral School of Warsaw University of Technology, Plac Politechniki 1, Warsaw 00-661, Poland
| | - Aleksandra Kawecka
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Mehtap Civelek
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Michał Wojasiński
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Iwona Cicha
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Tomasz Ciach
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Beata A Butruk-Raszeja
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| |
Collapse
|
5
|
Nikolić N, Olmos D, Kramar A, González-Benito J. Effect of Collector Rotational Speed on the Morphology and Structure of Solution Blow Spun Polylactic Acid (PLA). Polymers (Basel) 2024; 16:191. [PMID: 38256990 PMCID: PMC10819695 DOI: 10.3390/polym16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Apart from structure and composition, morphology plays a significant role in influencing the performance of materials in terms of both bulk and surface behavior. In this work, polylactic acid (PLA) constituted by submicrometric fibers is prepared. Using a modified electrospinning (ES) device to carry out solution blow spinning (SBS), the fibrillar morphology is modified, with the aim to induce variations in the properties of the material. The modification of the ES device consists of the incorporation of a source of pressurized gas (air) and a 3D-printed nozzle of our own design. For this work, the morphology of the PLA submicrometric fibers is modified by varying the rotational speed of the collector in order to understand its influence on different properties and, consequently, on the performance of the material. The rotational speed of a cylindrical collector (250, 500, 1000 and 2000 rpm) is considered as variable for changing the morphology. Morphological study of the materials was performed using scanning electron microscopy and image analysis carried out with ImageJ 1.54f software. Besides a morphology study, structural characterization by Fourier transformed infrared spectroscopy using attenuated total reflectance of prepared materials is carried out. Finally, the morphology and structure of produced PLA fibrous mats were correlated with the analysis of mechanical properties, wettability behavior and adhesion of DH5-α E. coli bacteria. It is of interest to highlight how small morphological and chemical structure variations can lead to important changes in materials' performance. These changes include, for example, those above 30% in some mechanical parameters and clear variations in bacterial adhesion capacity.
Collapse
Affiliation(s)
- Nataša Nikolić
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; (N.N.); (D.O.); (A.K.)
| | - Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; (N.N.); (D.O.); (A.K.)
- Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba”, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; (N.N.); (D.O.); (A.K.)
- Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba”, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; (N.N.); (D.O.); (A.K.)
- Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba”, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| |
Collapse
|