1
|
Ćorović M, Ehweiner MA, Hartmann PE, Sbüll F, Belaj F, Boese AD, Lepluart J, Kirk ML, Mösch-Zanetti NC. Understanding the Carbyne Formation from C 2H 2 Complexes. J Am Chem Soc 2024; 146:32392-32402. [PMID: 39546808 PMCID: PMC11613314 DOI: 10.1021/jacs.4c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Nature chooses a high-valent tungsten center at the active site of the enzyme acetylene hydratase to facilitate acetylene hydration to acetaldehyde. However, the reactions of tungsten-coordinated acetylene are still not well understood, which prevents the development of sustainable bioinspired alkyne hydration catalysts. Here we report the reactivity of two bioinspired tungsten complexes with the acetylene ligand acting as a four-: [W(CO)(C2H2)(PymS)2] (1) and a two-electron donor: [WO(C2H2)(PymS)2] (3), with PMe3 as a nucleophile to simulate the enzyme's reactivity (PymS = 4-(trifluoromethyl)-6-methylpyrimidine-2-thiolate). In dichloromethane, compound 1 was found to react to the cationic carbyne [W≡CCH2PMe3(CO)(PMe3)2(PymS)]Cl (2-Cl) while 3 reacts to the vinyl compound [WO(CH═CHPMe3)(PMe3)3(PymS)]Cl (4-Cl). The formation of the latter follows the common rules applied to η2-alkyne complexes, whereas the carbyne formation was not expected due to the challenging 1,2-H shift. To understand these differences in behavior between seemingly similar acetylene complexes, stepwise addition of the nucleophile in various solvents was investigated by synthetic, spectroscopic, and computational approaches. In this manuscript, we describe that only a four-electron donor acetylene complex can react to the carbyne over the η1-vinyl intermediate and that 1,2-H shift can be assisted by an H-transfer reagent (in this case, the decoordinated PymS ligand). Furthermore, to favor the attack of PMe3 at W coordinated acetylene, the metal center needs to be electron-poor and crowded enough to prevent nucleophile coordination. Finally, the intricate role of the anionic PymS ligand in the vicinity of the first coordination sphere models the potential involvement of amino acid residues during acetylene transformations in AH.
Collapse
Affiliation(s)
- Miljan
Z. Ćorović
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Madeleine A. Ehweiner
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Peter E. Hartmann
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Felix Sbüll
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - A. Daniel Boese
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Jesse Lepluart
- Department
of Chemistry and Chemical Biology, The University
of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L. Kirk
- Department
of Chemistry and Chemical Biology, The University
of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Nadia C. Mösch-Zanetti
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
2
|
Ćorović M, Milinkovic A, Stix N, Dupé A, Mösch-Zanetti NC. Nucleophiles Target the Tungsten Center Over Acetylene in Biomimetic Models. Inorg Chem 2024; 63:11953-11962. [PMID: 38877603 PMCID: PMC11220757 DOI: 10.1021/acs.inorgchem.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Inspired by the first shell mechanism proposed for the tungstoenzyme acetylene hydratase, the electrophilic reactivity of tungsten-acetylene complexes [W(CO)(C2H2)(6-MePyS)2] (1) and [WO(C2H2)(6-MePyS)2] (2) was investigated. The biological nucleophile water/hydroxide and tert-butyl isocyanide were employed. Our findings consistently show that, regardless of the nucleophile used, both tungsten centers W(II) and W(IV), respectively, are the preferred targets over the coordinated acetylene. Treatment of 2 with aqueous NaOH led to protonation of coordinated acetylene to ethylene, pointing toward the Brønsted basic character of the coordinated alkyne instead of the anticipated electrophilic behavior. In cases involving isocyanides as nucleophiles, the attack on the W(II) center of 1 took place first, whereas the W(IV) complex 2 remained unchanged. These experiments indicate that the direct nucleophilic attack of W-coordinated acetylene by water, as some computational studies of acetylene hydratase propose, is unlikely to occur.
Collapse
Affiliation(s)
- Miljan
Z. Ćorović
- Institute of Chemistry, Inorganic
Chemistry, University of Graz, 8010 Graz, Austria
| | - Angela Milinkovic
- Institute of Chemistry, Inorganic
Chemistry, University of Graz, 8010 Graz, Austria
| | - Niklas Stix
- Institute of Chemistry, Inorganic
Chemistry, University of Graz, 8010 Graz, Austria
| | - Antoine Dupé
- Institute of Chemistry, Inorganic
Chemistry, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
3
|
Cranswick MA, Sperber EC, Houser RP, Farquhar ER. Isolation and characterization of a bis(dithiolene)-supported tungsten-acetylenic complex as a model for acetylene hydratase. J Inorg Biochem 2024; 255:112543. [PMID: 38554579 DOI: 10.1016/j.jinorgbio.2024.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Acetylene hydratase is currently the only known mononuclear tungstoenzyme that does not catalyze a net redox reaction. The conversion of acetylene to acetaldehyde is proposed to occur at a W(IV) active site through first-sphere coordination of the acetylene substrate. To date, a handful of tungsten complexes have been shown to bind acetylene, but many lack the bis(dithiolene) motif of the native enzyme. The model compound, [W(O)(mnt)2]2-, where mnt2- is 1,2-dicyano-1,2-dithiolate, was previously reported to bind an electrophilic acetylene substrate, dimethyl acetylenedicarboxylate, and characterized by FT-IR, UV-vis, potentiometry, and mass spectrometry (Yadav, J; Das, S. K.; Sarkar, S., J. Am. Chem. Soc., 1997, 119, 4316-4317). By slightly changing the electrophilic acetylene substrate, an acetylenic-bis(dithiolene)‑tungsten(IV) complex has been isolated and characterized by FT-IR, UV-vis, NMR, X-ray diffraction, and X-ray absorption spectroscopy. Activation parameters for complex formation were also determined and suggest coordination-sphere reorganization is a limiting factor in the model complex reactivity.
Collapse
Affiliation(s)
- Matthew A Cranswick
- Department of Chemistry, Colorado State University Pueblo, Pueblo, CO 81001, USA.
| | - E Christine Sperber
- Department of Chemistry, Colorado State University Pueblo, Pueblo, CO 81001, USA
| | - Robert P Houser
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
4
|
Fenibo EO, Selvarajan R, Wang H, Wang Y, Abia ALK. Untapped talents: insight into the ecological significance of methanotrophs and its prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166145. [PMID: 37579801 DOI: 10.1016/j.scitotenv.2023.166145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Yue Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Environmental Research Foundation, Westville 3630, South Africa; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
5
|
Winiarska A, Ramírez-Amador F, Hege D, Gemmecker Y, Prinz S, Hochberg G, Heider J, Szaleniec M, Schuller JM. A bacterial tungsten-containing aldehyde oxidoreductase forms an enzymatic decorated protein nanowire. SCIENCE ADVANCES 2023; 9:eadg6689. [PMID: 37267359 PMCID: PMC10413684 DOI: 10.1126/sciadv.adg6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Aldehyde oxidoreductases (AORs) are tungsten enzymes catalyzing the oxidation of many different aldehydes to the corresponding carboxylic acids. In contrast to other known AORs, the enzyme from the denitrifying betaproteobacterium Aromatoleum aromaticum (AORAa) consists of three different subunits (AorABC) and uses nicotinamide adenine dinucleotide (NAD) as an electron acceptor. Here, we reveal that the enzyme forms filaments of repeating AorAB protomers that are capped by a single NAD-binding AorC subunit, based on solving its structure via cryo-electron microscopy. The polyferredoxin-like subunit AorA oligomerizes to an electron-conducting nanowire that is decorated with enzymatically active and W-cofactor (W-co) containing AorB subunits. Our structure further reveals the binding mode of the native substrate benzoate in the AorB active site. This, together with quantum mechanics:molecular mechanics (QM:MM)-based modeling for the coordination of the W-co, enables formulation of a hypothetical catalytic mechanism that paves the way to further engineering for applications in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Fidel Ramírez-Amador
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Dominik Hege
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Simone Prinz
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Georg Hochberg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johann Heider
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Jan Michael Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
6
|
Hagen WR. The Development of Tungsten Biochemistry-A Personal Recollection. Molecules 2023; 28:molecules28104017. [PMID: 37241758 DOI: 10.3390/molecules28104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Comparative Transcriptomics Sheds Light on Remodeling of Gene Expression during Diazotrophy in the Thermophilic Methanogen Methanothermococcus thermolithotrophicus. mBio 2022; 13:e0244322. [PMID: 36409126 PMCID: PMC9765008 DOI: 10.1128/mbio.02443-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.
Collapse
|
8
|
Tian X, Xie H, Li J, Cui L, Yu YL, Li B, Li YF. Nano-WSe 2 Is Absorbable and Transformable by Rice Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227826. [PMID: 36431926 PMCID: PMC9694913 DOI: 10.3390/molecules27227826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
As typical transition metal dichalcogenides (TMDC), tungsten selenide (WSe2) nanosheets (nano-WSe2) are widely used in various fields due to their layered structures and highly tunable electronic and magnetic properties, which results in the unwanted release of tungsten (W) and selenium (Se) into the environment. However, the environmental effects of nano-WSe2 in plants are still unclear. Herein, we evaluated the impacts and fate of nano-WSe2 and micro-WSe2 in rice plants (Oryza sativa L.). It was found that both nano-WSe2 and micro-WSe2 did not affect the germination of rice seeds up to 5000 mg/L but nano-WSe2 affected the growth of rice seedlings with shortened root lengths. The uptake and transportation of WSe2 was found to be size-dependent. Moreover, W in WSe2 was oxidized to tungstate while Se was transformed to selenocysteine, selenomethionine, SeIV and SeVI in the roots of rice when exposed to nano-WSe2, suggesting the transformation of nano-WSe2 in rice plants. The exposure to nano-WSe2 brought lipid peroxidative damage to rice seedlings. However, Se in nano-WSe2 did not contribute to the synthesis of glutathione peroxidase (GSH-Px) since the latter did not change when exposed to nano-WSe2. This is the first report on the impacts and fate of nano-WSe2 in rice plants, which has raised environmental safety concerns about the wide application of TMDCs, such as WSe2 nanosheets.
Collapse
Affiliation(s)
- Xue Tian
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jincheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Correspondence: (Y.-L.Y.); (Y.-F.L.); Tel.: +86-24-83688944 (Y.-L.Y.); +86-10-88233908 (Y.-F.L.)
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.-L.Y.); (Y.-F.L.); Tel.: +86-24-83688944 (Y.-L.Y.); +86-10-88233908 (Y.-F.L.)
| |
Collapse
|
9
|
Beliaeva M, Seebeck FP. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS AU 2022; 2:2098-2107. [PMID: 36186560 PMCID: PMC9516567 DOI: 10.1021/jacsau.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/29/2023]
Abstract
Ergothioneine is a histidine derivative with a 2-mercaptoimidazole side chain and a trimethylated α-amino group. Although the physiological function of this natural product is not yet understood, the facts that many bacteria, some archaea, and most fungi produce ergothioneine and that plants and animals have specific mechanisms to absorb and distribute ergothioneine in specific tissues suggest a fundamental role in cellular life. The observation that ergothioneine biosynthesis has emerged multiple times in molecular evolution points to the same conclusion. Aerobic bacteria and fungi attach sulfur to the imidazole ring of trimethylhistidine via an O2-dependent reaction that is catalyzed by a mononuclear non-heme iron enzyme. Green sulfur bacteria and archaea use a rhodanese-like sulfur transferase to attach sulfur via oxidative polar substitution. In this report, we describe a third unrelated class of enzymes that catalyze sulfur transfer in ergothioneine production. The metallopterin-dependent ergothioneine synthase from Caldithrix abyssi contains an N-terminal module that is related to the tungsten-dependent acetylene hydratase and a C-terminal domain that is a functional cysteine desulfurase. The two modules cooperate to transfer sulfur from cysteine onto trimethylhistidine. Inactivation of the C-terminal desulfurase blocks ergothioneine production but maintains the ability of the metallopterin to exchange sulfur between ergothioneine and trimethylhistidine. Homologous bifunctional enzymes are encoded exclusively in anaerobic bacterial and archaeal species.
Collapse
Affiliation(s)
- Mariia
A. Beliaeva
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Florian P. Seebeck
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
10
|
Kruse T. Function of Molybdenum Insertases. Molecules 2022; 27:molecules27175372. [PMID: 36080140 PMCID: PMC9458074 DOI: 10.3390/molecules27175372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
For most organisms molybdenum is essential for life as it is found in the active site of various vitally important molybdenum dependent enzymes (Mo-enzymes). Here, molybdenum is bound to a pterin derivative called molybdopterin (MPT), thus forming the molybdenum cofactor (Moco). Synthesis of Moco involves the consecutive action of numerous enzymatic reaction steps, whereby molybdenum insertases (Mo-insertases) catalyze the final maturation step, i.e., the metal insertion reaction yielding Moco. This final maturation step is subdivided into two partial reactions, each catalyzed by a distinctive Mo-insertase domain. Initially, MPT is adenylylated by the Mo-insertase G-domain, yielding MPT-AMP which is used as substrate by the E-domain. This domain catalyzes the insertion of molybdate into the MPT dithiolene moiety, leading to the formation of Moco-AMP. Finally, the Moco-AMP phosphoanhydride bond is cleaved by the E-domain to liberate Moco from its synthesizing enzyme. Thus formed, Moco is physiologically active and may be incorporated into the different Mo-enzymes or bind to carrier proteins instead.
Collapse
Affiliation(s)
- Tobias Kruse
- Institute of Plant Biology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Ćorović MZ, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Replacement of Molybdenum by Tungsten in a Biomimetic Complex Leads to an Increase in Oxygen Atom Transfer Catalytic Activity. Inorg Chem 2022; 61:12415-12424. [PMID: 35894844 PMCID: PMC9367641 DOI: 10.1021/acs.inorgchem.2c01868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upon replacement of molybdenum by tungsten in DMSO reductase isolated from the Rhodobacteraceae family, the derived enzyme catalyzes DMSO reduction faster. To better understand this behavior, we synthesized two tungsten(VI) dioxido complexes [WVIO2L2] with pyridine- (PyS) and pyrimidine-2-thiolate (PymS) ligands, isostructural to analogous molybdenum complexes we reported recently. Higher oxygen atom transfer (OAT) catalytic activity was observed with [WO2(PyS)2] compared to the Mo species, independent of whether PMe3 or PPh3 was used as the oxygen acceptor. [WVIO2L2] complexes undergo reduction with an excess of PMe3, yielding the tungsten(IV) oxido species [WOL2(PMe3)2], while with PPh3, no reactions are observed. Although OAT reactions from DMSO to phosphines are known for tungsten complexes, [WOL2(PMe3)2] are the first fully characterized phosphine-stabilized intermediates. By following the reaction of these reduced species with excess DMSO via UV-vis spectroscopy, we observed that tungsten compounds directly react to WVIO2 complexes while the Mo analogues first form μ-oxo Mo(V) dimers [Mo2O3L4]. Density functional theory calculations confirm that the oxygen atom abstraction from WVIO2 is an endergonic process contrasting the respective reaction with molybdenum. Here, we suggest that depending on the sacrificial oxygen acceptor, the tungsten complex may participate in catalysis either via a redox reaction or as an electrophile.
Collapse
Affiliation(s)
- Miljan Z Ćorović
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Fabian Wiedemaier
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
12
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
13
|
Winiarska A, Hege D, Gemmecker Y, Kryściak-Czerwenka J, Seubert A, Heider J, Szaleniec M. Tungsten Enzyme Using Hydrogen as an Electron Donor to Reduce Carboxylic Acids and NAD . ACS Catal 2022; 12:8707-8717. [PMID: 35874620 PMCID: PMC9295118 DOI: 10.1021/acscatal.2c02147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Tungsten-dependent
aldehyde oxidoreductases (AORs) catalyze the
oxidation of aldehydes to acids and are the only known enzymes reducing
non-activated acids using electron donors with low redox potentials.
We report here that AOR from Aromatoleum aromaticum (AORAa) catalyzes the reduction of organic
acids not only with low-potential Eu(II) or Ti(III) complexes but
also with H2 as an electron donor. Additionally, AORAa catalyzes the H2-dependent reduction
of NAD+ or benzyl viologen. The rate of H2-dependent
NAD+ reduction equals to 10% of that of aldehyde oxidation,
representing the highest H2 turnover rate observed among
the Mo/W enzymes. As AORAa simultaneously
catalyzes the reduction of acids and NAD+, we designed
a cascade reaction utilizing a NAD(P)H-dependent alcohol dehydrogenase
to reduce organic acids to the corresponding alcohols with H2 as the only reductant. The newly discovered W-hydrogenase side activity
of AORAa may find applications in either
NADH recycling or conversion of carboxylic acids to more useful biochemicals.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Dominik Hege
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Joanna Kryściak-Czerwenka
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Andreas Seubert
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Johann Heider
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| |
Collapse
|
14
|
Ehweiner MA, Belaj F, Mösch-Zanetti NC. Synthesis and structure of two isomers of a molybdenum(II) 2-butyne complex stabilized by bioinspired S,N-bidentate ligands. Acta Crystallogr C Struct Chem 2022; 78:218-222. [PMID: 35380124 PMCID: PMC8981119 DOI: 10.1107/s2053229622002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
The synthesis and structural determination of two isomers of the molybdenum(II) complex (η2-but-2-yne)carbonylbis[2-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)benzenethiolato-κ2N,S]molybdenum(II), [Mo(C11H12NOS)2(C4H6)(CO)] or Mo(CO)(C2Me2)(S-Phoz)2, are presented. The N,N-cis-S,S-trans isomer 1 shows quite different bond lengths to the metal atom [Mo-N = 2.4715 (10) versus 2.3404 (11) Å; Mo-S = 2.4673 (3) versus 2.3665 (3) Å]. In the N,N-trans-S,S-cis isomer 2, which is isotypic with the corresponding W complex, the Mo-N bond lengths [2.236 (2) and 2.203 (2) Å], as well as the Mo-S bond lengths [2.5254 (8) and 2.5297 (8) Å], are almost the same.
Collapse
Affiliation(s)
- Madeleine A. Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Nadia C. Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
15
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
16
|
Abstract
More than 55 distinct classes of riboswitches that respond to small metabolites or elemental ions have been experimentally validated to date. The ligands sensed by these riboswitches are biased in favor of fundamental compounds or ions that are likely to have been relevant to ancient forms of life, including those that might have populated the "RNA World", which is a proposed biochemical era that predates the evolutionary emergence of DNA and proteins. In the following text, I discuss the various types of ligands sensed by some of the most common riboswitches present in modern bacterial cells and consider implications for ancient biological processes centered on the proven capabilities of these RNA-based sensors. Although most major biochemical aspects of metabolism are represented by known riboswitch classes, there are striking sensory gaps in some key areas. These gaps could reveal weaknesses in the performance capabilities of RNA that might have hampered RNA World evolution, or these could highlight opportunities to discover additional riboswitch classes that sense essential metabolites.
Collapse
Affiliation(s)
- Ronald R. Breaker
- Corresponding Author: Ronald R. Breaker - Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, United States; Phone: 203-432-9389; , Twitter: @RonBreaker
| |
Collapse
|
17
|
Arthur R, Antonczyk S, Off S, Scherer PA. Mesophilic and Thermophilic Anaerobic Digestion of Wheat Straw in a CSTR System with 'Synthetic Manure': Impact of Nickel and Tungsten on Methane Yields, Cell Count, and Microbiome. Bioengineering (Basel) 2022; 9:bioengineering9010013. [PMID: 35049722 PMCID: PMC8772805 DOI: 10.3390/bioengineering9010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Lignocellulosic residues, such as straw, are currently considered as candidates for biogas production. Therefore, straw fermentations were performed to quantitatively estimate methane yields and cell counts, as well as to qualitatively determine the microbiome. Six fully automated, continuously stirred biogas reactors were used: three mesophilic (41 °C) and three thermophilic (58 °C). They were fed every 8 h with milled wheat straw suspension in a defined, buffered salt solution, called 'synthetic manure'. Total reflection X-ray fluorescence spectrometry analyses showed nickel and tungsten deficiency in the straw suspension. Supplementation of nickel and subsequently tungsten, or with an increasing combined dosage of both elements, resulted in a final concentration of approximately 0.1 mg/L active, dissolved tungsten ions, which caused an increase of the specific methane production, up to 63% under mesophilic and 31% under thermophilic conditions. That is the same optimal range for pure cultures of methanogens or bacteria found in literature. A simultaneous decrease of volatile fatty acids occurred. The Ni/W effect occurred with all three organic loading rates, being 4.5, 7.5, and 9.0 g volatile solids per litre and day, with a concomitant hydraulic retention time of 18, 10, or 8 days, respectively. A maximum specific methane production of 0.254 m3 CH4, under standard temperature and pressure per kg volatile solids (almost 90% degradation), was obtained. After the final supplementation of tungsten, the cell counts of methanogens increased by 300%, while the total microbial cell counts increased by only 3-62%. The mesophilic methanogenic microflora was shifted from the acetotrophic Methanosaeta to the hydrogenotrophic Methanoculleus (85%) by tungsten, whereas the H2-CO2-converter, Methanothermobacter, always dominated in the thermophilic fermenters.
Collapse
Affiliation(s)
- Richard Arthur
- Energy Systems Engineering Department, Koforidua Technical University, Koforidua P.O. Box KF 981, Ghana;
| | - Sebastian Antonczyk
- Research Center for Biomass Utilization, Faculty Life Sciences, Hamburg University of Applied Sciences (HAW), 20099 Hamburg, Germany; (S.A.); (S.O.)
| | - Sandra Off
- Research Center for Biomass Utilization, Faculty Life Sciences, Hamburg University of Applied Sciences (HAW), 20099 Hamburg, Germany; (S.A.); (S.O.)
| | - Paul A. Scherer
- Research Center for Biomass Utilization, Faculty Life Sciences, Hamburg University of Applied Sciences (HAW), 20099 Hamburg, Germany; (S.A.); (S.O.)
- Correspondence:
| |
Collapse
|
18
|
Bondi R, Ćorović MZ, Buchsteiner M, Vidovič C, Belaj F, Mösch-Zanetti NC. The Effect of Pyridine-2-thiolate Ligands on the Reactivity of Tungsten Complexes toward Oxidation and Acetylene Insertion. Organometallics 2021; 40:3591-3598. [PMID: 34776581 PMCID: PMC8579403 DOI: 10.1021/acs.organomet.1c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/30/2022]
Abstract
![]()
Intending to deepen
our understanding of tungsten acetylene (C2H2) chemistry, with regard to the tungstoenzyme
acetylene hydratase, here we explore the structure and reactivity
of a series of tungsten acetylene complexes, stabilized with pyridine-2-thiolate
ligands featuring tungsten in both +II and +IV oxidation states. By
varying the substitution of the pyridine-2-thiolate moiety with respect
to steric and electronic properties, we examined the details and limits
of the previously reported intramolecular nucleophilic attack on acetylene
followed by the formation of acetylene inserted complexes. Here, we
demonstrate that only the combination of high steric demand and electron-withdrawing
features prevents acetylene insertion. Nevertheless, although variable
synthetic approaches are necessary for their synthesis, tungsten acetylene
complexes can be stabilized predictably with a variety of pyridine-2-thiolate
ligands.
Collapse
Affiliation(s)
- Riccardo Bondi
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Miljan Z Ćorović
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Michael Buchsteiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Carina Vidovič
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
19
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
20
|
Ehweiner MA, Belaj F, Kirchner K, Mösch-Zanetti NC. Synthesis and Reactivity of a Bioinspired Molybdenum(IV) Acetylene Complex. Organometallics 2021; 40:2576-2583. [PMID: 34393319 PMCID: PMC8356224 DOI: 10.1021/acs.organomet.1c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/29/2022]
Abstract
![]()
The isolation of
a molybdenum(IV) acetylene (C2H2) complex containing
two bioinspired 6-methylpyridine-2-thiolate
ligands is reported. The synthesis can be performed either by oxidation
of a molybdenum(II) C2H2 complex or by substitution
of a coordinated PMe3 by C2H2 on
a molybdenum(IV) center. Both C2H2 complexes
were characterized by spectroscopic means as well as by single-crystal
X-ray diffraction. Furthermore, the reactivity of the coordinated
C2H2 was investigated with regard to acetylene
hydratase, one of two enzymes that accept C2H2 as a substrate. While the reaction with water resulted in the vinylation
of the pyridine-2-thiolate ligands, an intermolecular nucleophilic
attack on the coordinated C2H2 with the soft
nucleophile PMe3 was observed to give a cationic ethenyl
complex. A comparison with the tungsten analogues revealed less tightly
bound C2H2 in the molybdenum variant, which,
however, shows a higher reactivity toward nucleophiles.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | | |
Collapse
|
21
|
Transition Metals in Catalysis: The Functional Relationship of Fe–S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems. INORGANICS 2021. [DOI: 10.3390/inorganics9010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Following the “Molybdenum and Tungsten Enzyme conference—MoTEC2019” and the satellite meeting on “Iron–Sulfur for Life”, we wanted to emphasize the link between iron–sulfur clusters and their importance for the biosynthesis, assembly, and activity of complex metalloenzymes in this Special Issue of Inorganics, entitled “Transition Metals in Catalysis: The Functional Relationship of Fe–S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems” [...]
Collapse
|
22
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|