1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Chiaverini L, Tolbatov I, Marrone A, Marzo T, Biver T, La Mendola D. Unveiling the mechanism of activation of the Te(IV) prodrug AS101. New chemical insights towards a better understanding of its medicinal properties. J Inorg Biochem 2024; 256:112567. [PMID: 38669911 DOI: 10.1016/j.jinorgbio.2024.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
3
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
4
|
Kumari P, Hansdah P. Sources and toxicological effects of metal and metalloids on human health through fish consumption in mineral-rich city, Ranchi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1032. [PMID: 37561244 DOI: 10.1007/s10661-023-11639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Ranchi is the administrative capital of Jharkhand and is located in the southern part of the Chhotanagpur Plateau. It is rich in forest and mineral resources and hence is suitable for the establishment of many large- and small-scale industries. The estimated population of Ranchi for the year 2023 is 3.54 million. These demographic characteristics make the capital more vulnerable to environmental degradation. Also, previous water quality research focused on river, water, and oceans separately; however, little or no work has been carried out on the comparison of metal or metalloid analysis in rivers, waterfalls, and lakes. Hence, the present study aims to assess the pollution status of mineral-rich and industrial hub city, Ranchi, through analysis of metals or metalloids in abiotic (water and sediment) and biotic (fish and human) components. The water, sediment, and fish (Labeo rohita and Catla catla) samples were collected from Subarnarekha river, Jumar river, Dassam fall, Getalsud dam, Hundru fall, Jonha fall, Kanke dam, and Sita fall. Samples were collected following standard methods and analyzed in inductively coupled plasma mass spectrometry (ICP-MS). Among three aquatic systems (rivers, dams, and falls), dams were highly polluted with metals or metalloids, which may be due to effluent discharge from different industries. Additionally, the high population in the city also contributed to metals or metalloids pollution. The reason may be the direct sewage disposal and agricultural and surface runoff in the water systems. It was observed that most of the aquatic systems in Ranchi were severely polluted with metals or metalloids. The fish also accumulated these metals or metalloids in their body and can be life-threatening to the human population consuming them. The THQ (above 1) and HI (2.95) values for As showed that children are more vulnerable to health risk through consumption of contaminated fish. Hence, proper planning and management are needed to overcome the metals or metalloids pollution in Ranchi.
Collapse
Affiliation(s)
- Preeti Kumari
- Amity Institute of Applied Sciences, Amity University, Jharkhand, 834002, India.
- Department of Environmental Science and Engg., Indian Institute of Technology (ISM), Dhanbad, 826004, India.
| | - Puja Hansdah
- Department of Mining Engineering, Academy of Maritime Education and Training, Chennai, 603112, India
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| |
Collapse
|
5
|
Marzo T, Messori L. Protein targets for anticancer metal based drugs. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:794-807. [DOI: 10.1016/b978-0-12-823144-9.00078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Cirri D, Chiaverini L, Pratesi A, Marzo T. Is the Next Cisplatin Already in Our Laboratory? COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
7
|
Integrative Metallomics Studies of Toxic Metal(loid) Substances at the Blood Plasma–Red Blood Cell–Organ/Tumor Nexus. INORGANICS 2022. [DOI: 10.3390/inorganics10110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Globally, an estimated 9 million deaths per year are caused by human exposure to environmental pollutants, including toxic metal(loid) species. Since pollution is underestimated in calculations of the global burden of disease, the actual number of pollution-related deaths per year is likely to be substantially greater. Conversely, anticancer metallodrugs are deliberately administered to cancer patients, but their often dose-limiting severe adverse side-effects necessitate the urgent development of more effective metallodrugs that offer fewer off-target effects. What these seemingly unrelated events have in common is our limited understanding of what happens when each of these toxic metal(loid) substances enter the human bloodstream. However, the bioinorganic chemistry that unfolds at the plasma/red blood cell interface is directly implicated in mediating organ/tumor damage and, therefore, is of immediate toxicological and pharmacological relevance. This perspective will provide a brief synopsis of the bioinorganic chemistry of AsIII, Cd2+, Hg2+, CH3Hg+ and the anticancer metallodrug cisplatin in the bloodstream. Probing these processes at near-physiological conditions and integrating the results with biochemical events within organs and/or tumors has the potential to causally link chronic human exposure to toxic metal(loid) species with disease etiology and to translate more novel anticancer metal complexes to clinical studies, which will significantly improve human health in the 21st century.
Collapse
|
8
|
Roy A, Datta S, Luthra R, Khan MA, Gacem A, Hasan MA, Yadav KK, Ahn Y, Jeon BH. Green synthesis of metalloid nanoparticles and its biological applications: A review. Front Chem 2022; 10:994724. [PMID: 36226118 PMCID: PMC9549281 DOI: 10.3389/fchem.2022.994724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesis of metalloid nanoparticles using biological-based fabrication has become an efficient alternative surpassing the existing physical and chemical approaches because there is a need for developing safer, more reliable, cleaner, and more eco-friendly methods for their preparation. Over the last few years, the biosynthesis of metalloid nanoparticles using biological materials has received increased attention due to its pharmaceutical, biomedical, and environmental applications. Biosynthesis using bacterial, fungal, and plant agents has appeared as a faster developing domain in bio-based nanotechnology globally along with other biological entities, thus posing as an option for conventional physical as well as chemical methods. These agents can efficiently produce environment-friendly nanoparticles with the desired composition, morphology (shape as well as size), and stability, along with homogeneity. Besides this, metalloid nanoparticles possess various applications like antibacterial by damaging bacterial cell membranes, anticancer due to damaging tumour sites, targeted drug delivery, drug testing, and diagnostic roles. This review summarizes the various studies associated with the biosynthesis of metalloid particles, namely, tellurium, arsenic, silicon, boron, and antimony, along with their therapeutic, pharmaceutical and environmental applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; Byong-Hun Jeon,
| | | | | | - Muhammad Arshad Khan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
- *Correspondence: Arpita Roy, ; Byong-Hun Jeon,
| |
Collapse
|
9
|
Chiaverini L, Marzo T, La Mendola D. AS101: An overview on a leading tellurium-based prodrug. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Chiaverini L, Cirri D, Tolbatov I, Corsi F, Piano I, Marrone A, Pratesi A, Marzo T, La Mendola D. Medicinal Hypervalent Tellurium Prodrugs Bearing Different Ligands: A Comparative Study of the Chemical Profiles of AS101 and Its Halido Replaced Analogues. Int J Mol Sci 2022; 23:ijms23147505. [PMID: 35886853 PMCID: PMC9317073 DOI: 10.3390/ijms23147505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ammonium trichloro (dioxoethylene-O,O′) tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3−, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens’ group we observed a higher tendency to react, attributable to the ligands’ effect. The chemical and mechanistic implications of these meaningful differences are discussed.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Correspondence: (I.T.); (T.M.)
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
- Correspondence: (I.T.); (T.M.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| |
Collapse
|
11
|
Chiaverini L, Pratesi A, Cirri D, Nardinocchi A, Tolbatov I, Marrone A, Di Luca M, Marzo T, La Mendola D. Anti-Staphylococcal Activity of the Auranofin Analogue Bearing Acetylcysteine in Place of the Thiosugar: An Experimental and Theoretical Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082578. [PMID: 35458776 PMCID: PMC9032686 DOI: 10.3390/molecules27082578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488–499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au–S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (A.P.); (D.C.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (A.P.); (D.C.)
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 35–39, 56100 Pisa, Italy;
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35–39, 56100 Pisa, Italy;
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
| |
Collapse
|
12
|
Chiaverini L, Pratesi A, Cirri D, Nardinocchi A, Tolbatov I, Marrone A, Di Luca M, Marzo T, La Mendola D. Anti-Staphylococcal Activity of the Auranofin Analogue Bearing Acetylcysteine in Place of the Thiosugar: An Experimental and Theoretical Investigation. Molecules 2022. [PMID: 35458776 DOI: 10.3390/molecules27082578/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
13
|
In Vitro Anti-SARS-CoV-2 Activity of Selected Metal Compounds and Potential Molecular Basis for Their Actions Based on Computational Study. Biomolecules 2021; 11:biom11121858. [PMID: 34944502 PMCID: PMC8699537 DOI: 10.3390/biom11121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.
Collapse
|