1
|
San Miguel TV, Da Re D, Andreo V. A systematic review of Aedes aegypti population dynamics models based on differential equations. Acta Trop 2024; 260:107459. [PMID: 39527995 DOI: 10.1016/j.actatropica.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The global spread of Aedes aegypti and the associated public health risk have stimulated the development of several mathematical models to predict population dynamics in response to biological or environmental changes in real, future, or simulated scenarios. The aim of this study is to identify published articles on differential equation-based population dynamics models of Aedes aegypti, highlight their differences and commonalities, and examine their application in surveillance and control programs. Following the PRISMA guidelines, a systematic review was conducted in seven electronic databases (Scopus, PUBMED, IEEE Xplore, Science Direct, DOAJ, Scielo, and Google Scholar), with the last update on 8 February 2023. The initial search yielded 513 studies, of which 31 were finally selected. The articles analyzed showed great variability in the equations, processes, and variables included, with temperature being the most common environmental factor. Only a few models incorporated spatial heterogeneity or validation methods. Our findings suggest that improving the generation of temporal and spatially explicit forecasts through interdisciplinary collaboration, the use of new technologies, and validation with field data is essential for these models to effectively support public health efforts. Differential equation-based population dynamics models offer valuable insights and could greatly benefit mosquito surveillance programs if standardized and tailored to relevant scales.
Collapse
Affiliation(s)
- Tomás Valentín San Miguel
- Instituto de Altos Estudios Espaciales "Mario Gulich" (UNC-CONAE). Falda del Cañete, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Daniele Da Re
- Center Agriculture Food Environment, University of Trento. San Michele all'Adige, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach. San Michele all'Adige, Trento, Italy
| | - Verónica Andreo
- Instituto de Altos Estudios Espaciales "Mario Gulich" (UNC-CONAE). Falda del Cañete, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.
| |
Collapse
|
2
|
Analysis of the invasion of a city by Aedes aegypti via mathematical models and Bayesian statistics. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00528-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Russell MC, Herzog CM, Gajewski Z, Ramsay C, El Moustaid F, Evans MV, Desai T, Gottdenker NL, Hermann SL, Power AG, McCall AC. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 2022; 11:e71503. [PMID: 35044908 PMCID: PMC8769645 DOI: 10.7554/elife.71503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.
Collapse
Affiliation(s)
- Marie C Russell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Catherine M Herzog
- Center for Infectious Disease Dynamics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Chloe Ramsay
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Michelle V Evans
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- MIVEGEC, IRD, CNRS, Université MontpellierMontpellierFrance
| | - Trishna Desai
- Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Nicole L Gottdenker
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- Department of Veterinary Pathology, University of Georgia College of Veterinary MedicineAthensUnited States
| | - Sara L Hermann
- Department of Entomology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - Andrew C McCall
- Biology Department, Denison UniversityGranvilleUnited States
| |
Collapse
|
4
|
Damos PT, Dorrestijn J, Thomidis T, Tuells J, Caballero P. A Temperature Conditioned Markov Chain Model for Predicting the Dynamics of Mosquito Vectors of Disease. INSECTS 2021; 12:insects12080725. [PMID: 34442291 PMCID: PMC8396828 DOI: 10.3390/insects12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Understanding and predicting mosquito population dynamics is crucial for gaining insight into the abundance of arthropod disease vectors and for the design of effective vector control strategies. In this work, a climate-conditioned Markov chain (CMC) model was developed and applied for the first time to predict the dynamics of vectors of important medical diseases. Temporal changes in mosquito population profiles were generated to simulate the probabilities of a high population impact. The simulated transition probabilities of the mosquito populations achieved from the trained model are very near to the observed data transitions that have been used to parameterize and validate the model. Thus, the CMC model satisfactorily describes the temporal evolution of the mosquito population process. In general, our numerical results, when temperature is considered as the driver of change, indicate that it is more likely for the population system to move into a state of high population level when the former is a state of a lower population level than the opposite. Field data on frequencies of successive mosquito population levels, which were not used for the data inferred MC modeling, were assembled to obtain an empirical intensity transition matrix and the frequencies observed. Our findings match to a certain degree the empirical results in which the probabilities follow analogous patterns while no significant differences were observed between the transition matrices of the CMC model and the validation data (ChiSq = 14.58013, df = 24, p = 0.9324451). The proposed modeling approach is a valuable eco-epidemiological study. Moreover, compared to traditional Markov chains, the benefit of the current CMC model is that it takes into account the stochastic conditional properties of ecological-related climate variables. The current modeling approach could save costs and time in establishing vector eradication programs and mosquito surveillance programs.
Collapse
Affiliation(s)
- Petros T. Damos
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
- Pharmacy Department, University General Infectious Disease Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54136 Thessaloniki, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
- Correspondence: or
| | - Jesse Dorrestijn
- Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN Delft, The Netherlands;
| | - Thomas Thomidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
| | - José Tuells
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| | - Pablo Caballero
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| |
Collapse
|
5
|
The importance of density dependence in juvenile mosquito development and survival: A model-based investigation. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Cator LJ, Johnson LR, Mordecai EA, Moustaid FE, Smallwood TRC, LaDeau SL, Johansson MA, Hudson PJ, Boots M, Thomas MB, Power AG, Pawar S. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol Evol 2020; 8:189. [PMID: 32775339 PMCID: PMC7409824 DOI: 10.3389/fevo.2020.00189] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many important endemic and emerging diseases are transmitted by vectors that are biting arthropods. The functional traits of vectors can affect pathogen transmission rates directly and also through their effect on vector population dynamics. Increasing empirical evidence shows that vector traits vary significantly across individuals, populations, and environmental conditions, and at time scales relevant to disease transmission dynamics. Here, we review empirical evidence for variation in vector traits and how this trait variation is currently incorporated into mathematical models of vector-borne disease transmission. We argue that mechanistically incorporating trait variation into these models, by explicitly capturing its effects on vector fitness and abundance, can improve the reliability of their predictions in a changing world. We provide a conceptual framework for incorporating trait variation into vector-borne disease transmission models, and highlight key empirical and theoretical challenges. This framework provides a means to conceptualize how traits can be incorporated in vector borne disease systems, and identifies key areas in which trait variation can be explored. Determining when and to what extent it is important to incorporate trait variation into vector borne disease models remains an important, outstanding question.
Collapse
Affiliation(s)
- Lauren J. Cator
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- BresMed America Inc, Las Vegas, NV, United States
| | | | - Shannon L. LaDeau
- The Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | | | - Peter J. Hudson
- Center for Infectious Disease Dynamics and Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew B. Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Alison G. Power
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|