1
|
Liu Z, Xia Y, Tan J, Wei M. Construction of a beneficial microbes-enriched rhizosphere system assists plants in phytophagous insect defense: current status, challenges and opportunities. PEST MANAGEMENT SCIENCE 2024; 80:5608-5618. [PMID: 38984867 DOI: 10.1002/ps.8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The construction of a plant rhizosphere system enriched with beneficial microbes (BMs) can efficiently help plants defend against phytophagous insects. However, our comprehensive understanding of this approach is still incomplete. In this review, we methodically analyzed the progress made over the last decade, identifying both challenges and opportunities. The main methods for developing a BMs-enriched rhizosphere system include inoculating exogenous BMs into plants, amending the existing soil microbiomes with amendments, and utilizing plants to shape the soil microbiomes. BMs can assist plants in suppressing phytophagous insects across many orders, including 13 Lepidoptera, seven Homoptera, five Hemiptera, five Coleoptera, four Diptera, and one Thysanoptera species by inducing plant systemic resistance, enhancing plant tolerance, augmenting plant secondary metabolite production, and directly suppressing herbivores. Context-dependent factors such as abiotic and biotic conditions, as well as the response of insect herbivores, can affect the outcomes of BM-assisted plant defense. Several challenges and opportunities have emerged, including the development of synthetic microbial communities for herbivore control, the integration of biosensors for effectiveness assessment, the confirmation of BM targets for phytophagous insect defense, and the regulation of outcomes via smart farming with artificial intelligence. This study offers valuable insights for developing a BM-enriched rhizosphere system within an integrated pest management approach. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongwang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yihan Xia
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mi Wei
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Sevillano-Caño J, García MJ, Córdoba-Galván C, Luque-Cruz C, Agustí-Brisach C, Lucena C, Ramos J, Pérez-Vicente R, Romera FJ. Exploring the Role of Debaryomyces hansenii as Biofertilizer in Iron-Deficient Environments to Enhance Plant Nutrition and Crop Production Sustainability. Int J Mol Sci 2024; 25:5729. [PMID: 38891917 PMCID: PMC11171756 DOI: 10.3390/ijms25115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.
Collapse
Affiliation(s)
- Jesús Sevillano-Caño
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - María José García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Clara Córdoba-Galván
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carmen Luque-Cruz
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Lucena
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Rafael Pérez-Vicente
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| |
Collapse
|
4
|
Wang X, Chi Y, Song S. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review. Front Microbiol 2024; 15:1347745. [PMID: 38591030 PMCID: PMC10999704 DOI: 10.3389/fmicb.2024.1347745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.
Collapse
Affiliation(s)
| | - Yongkuan Chi
- School of Karst Science, State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | | |
Collapse
|
5
|
Palermo TB, Cappellari LDR, Palermo JS, Giordano W, Banchio E. Simultaneous Impact of Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Essential Oil Production and VOC Emissions in Ocimum basilicum. PLANTS (BASEL, SWITZERLAND) 2024; 13:932. [PMID: 38611463 PMCID: PMC11013597 DOI: 10.3390/plants13070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Inoculation with rhizobacteria and feeding by herbivores, two types of abiotic stress, have been shown to increase the production of secondary metabolites in plants as part of the defense response. This study explored the simultaneous effects of inoculation with Bacillus amyloliquefaciens GB03 (a PGPR species) and herbivory by third-instar Spodoptera frugiperda larvae on essential oil (EO) yield and volatile organic compound (VOC) emissions in Ocimum basilicum plants. The density of glandular trichomes was also examined, given that they are linked to EO production and VOC emission. Herbivory increased EO content, but inoculation on its own did not. When combined, however, the two treatments led to a 10-fold rise in EO content with respect to non-inoculated plants. VOC emissions did not significantly differ between inoculated and non-inoculated plants, but they doubled in plants chewed by the larvae with respect to their undamaged counterparts. Interestingly, no changes were observed in VOC emissions when the treatments were tested together. In short, the two biotic stressors elicited differing plant defense responses, mainly when EO was concerned. PGPR did not stimulate EO production, while herbivory significantly enhanced it and increased VOC emissions. The combined treatment acted synergistically, and in this case, PGPR inoculation may have had a priming effect that amplified plant response to herbivory. Peltate trichome density was higher in inoculated plants, those damaged by larvae, and those subjected to the combination of both treatments. The findings highlight the intricate nature of plant defense mechanisms against various stressors and hint at a potential strategy to produce essential oil through the combined application of the two stressors tested here.
Collapse
Affiliation(s)
| | | | | | | | - Erika Banchio
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET—Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto 5800, Argentina (L.d.R.C.)
| |
Collapse
|
6
|
Rumyantsev SD, Veselova SV, Burkhanova GF, Alekseev VY, Maksimov IV. Bacillus subtilis 26D Triggers Induced Systemic Resistance against Rhopalosiphum padi L. by Regulating the Expression of Genes AGO, DCL and microRNA in Bread Spring Wheat. Microorganisms 2023; 11:2983. [PMID: 38138127 PMCID: PMC10745712 DOI: 10.3390/microorganisms11122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis 26D is a plant growth-promoting endophytic bacteria capable of inducing systemic resistance through the priming mechanism, which includes plant genome reprogramming and the phenomenon of RNA interference (RNAi) and microRNA (miRNAs). The phloem-feeding insect bird cherry-oat aphid Rhopalosiphum padi L. is a serious pest that causes significant damage to crops throughout the world. However, the function of plant miRNAs in the response to aphid infestation remains unclear. The results of this work showed that B. subtilis 26D stimulated aphid resistance in wheat plants, inducing the expression of genes of hormonal signaling pathways ICS, WRKY13, PR1, ACS, EIN3, PR3, and ABI5. In addition, B. subtilis 26D activated the RNAi mechanism and regulated the expression of nine conserved miRNAs through activation of the ethylene, salicylic acid (SA), and abscisic acid (ABA) signaling pathways, which was demonstrated by using treatments with phytohormones. Treatment of plants with SA, ethylene, and ABA acted in a similar manner to B. subtilis 26D on induction of the expression of the AGO4, AGO5 and DCL2, DCL4 genes, as well as the expression of nine conserved miRNAs. Different patterns of miRNA expression were found in aphid-infested plants and in plants treated with B. subtilis 26D or SA, ethylene, and ABA and infested by aphids, suggesting that miRNAs play multiple roles in the plant response to phloem-feeding insects, associated with effects on hormonal signaling pathways, redox metabolism, and the synthesis of secondary metabolites. Our study provides new data to further elucidate the fine mechanisms of bacterial-induced priming. However, further extensive work is needed to fully unravel these mechanisms.
Collapse
Affiliation(s)
| | - Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (S.D.R.); (G.F.B.); (V.Y.A.); (I.V.M.)
| | | | | | | |
Collapse
|
7
|
Daher E, Chierici E, Urbani S, Cinosi N, Rondoni G, Servili M, Famiani F, Conti E. Characterization of Olive Fruit Damage Induced by Invasive Halyomorpha halys. INSECTS 2023; 14:848. [PMID: 37999047 PMCID: PMC10671571 DOI: 10.3390/insects14110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive species causing economic crop losses. This species was recently detected attacking olive fruits. The aim of this study was to characterize feeding damage. Olive samples were initially collected from a field where H. halys was reported to cause damage to olive fruits. Hence, we conducted a field trial on the Moraiolo variety using sleeve cages to test the effect of H. halys feeding pressure on olive fruit drop and evaluated the effect of feeding on fruit quality. We tested two densities of H. halys (two or eight adults/cage) at two different stages of olive development, pre- and post-pit hardening. High pressure of H. halys before pit hardening caused a significant fruit drop compared to the control. In addition, chemical analysis of damaged and infested fruits revealed higher levels of total phenols compared to healthy fruits. These findings indicate that feeding by H. halys induced a stress response in the plants that could translate in quality variations in the olive drupes.
Collapse
Affiliation(s)
| | | | | | | | - Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (E.D.); (E.C.); (S.U.); (N.C.); (M.S.); (F.F.); (E.C.)
| | | | | | | |
Collapse
|
8
|
Rumyantsev SD, Alekseev VY, Sorokan AV, Burkhanova GF, Cherepanova EA, Garafutdinov RR, Maksimov IV, Veselova SV. Additive Effect of the Composition of Endophytic Bacteria Bacillus subtilis on Systemic Resistance of Wheat against Greenbug Aphid Schizaphis graminum Due to Lipopeptides. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010214. [PMID: 36676163 PMCID: PMC9860984 DOI: 10.3390/life13010214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The use of biocontrol agents based on endophytic bacteria against phloem-feeding insects is limited by a lack of knowledge and understanding of the mechanism of action of the endophyte community that makes up the plant microbiome. In this work, the mechanisms of the additive action of endophytic strains B. subtilis 26D and B. subtilis 11VM on the resistance of bread spring wheat against greenbug aphid Schizaphis graminum, was studied. It was shown that B. subtilis 26D secreted lipopeptide surfactin and phytohormones cytokinins, and B. subtilis 11VM produced iturin and auxins into the cultivation medium. Both strains and their lipopeptide-rich fractions showed direct aphicidal activity against greenbug aphid. For the first time, it was shown that B. subtilis 26D and B. subtilis 11VM in the same manner, as well as their lipopeptide-rich fractions, activated the expression of salicylate- and ethylene-dependent PR genes, and influenced plant redox metabolism, which led to an increase in plant endurance against aphids. The composition of endophytic strains B. subtilis 26D + B. subtilis 11VM had an additive effect on plant resistance to aphids due to an increase in the number of endophytic bacterial cells, and, as well as due to the synergistic effect of their mixture of lipopeptides - surfactin + iturin, both on the aphid mortality and on the expression of PR1 and PR3 genes. All these factors can be the reason for the observed increase in the growth of plants affected by aphids under the influence of B. subtilis 26D and B. subtilis 11VM, individually and in composition. The study demonstrates the possibility of creating in the future an artificial composition to enhance plant microbiome with endophytic bacteria, which combines growth-promoting and plant immunity stimulating properties against phloem-feeding insects. This direction is one of the most promising approaches to green pesticide discovery in the future.
Collapse
|
9
|
Palermo TB, Cappellari LDR, Chiappero J, Giordano W, Banchio E. Beneficial rhizobacteria inoculation on Ocimum basilicum reduces the growth performance and nutritional value of Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2022; 78:778-784. [PMID: 34708509 DOI: 10.1002/ps.6691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) has a significant role in plant-insect interaction. However, the extent of their impact on insects is still not well understood. This investigation was designed to evaluate the role of inoculation with Bacillus amyloliquefaciens GB03 on sweet basil (Ocimum basilucum L.) in the development and nutritional parameters of Spodoptera frugiperda. In addition, the feeding preferences on inoculated and non-inoculated plants were assessed. RESULTS Spodoptera frugiperda larvae reared with inoculated sweet basil leaves had a strong negative effect on the development of the insect, resulting in lower larval and pupal weights, and a longer period for larval-adult development. Moreover, adult emergence was reduced, but the relative consumption rate (RCR) value was unaffected, thereby revealing no alteration of the palatability. Growth rate and nutritional indicators, such as the efficiency of conversion of ingested food (ECI) and the efficiency of conversion of digested food (ECD), were reduced in larvae reared from treated plants. In the choice test, larvae avoided feeding on inoculated leaves. CONCLUSION The higher occurrence of secondary metabolites in inoculated plants could have been the reason for the reduction of the plant nutritional rate and also for the food selection, since it has been previously reported that GB03 inoculated sweet basil increased the essential oil yield. Therefore, PGPR inoculation could be used as a growth promoter, making it a promising candidate for plant protection programs against insects in aromatic plant production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamara Belén Palermo
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Lorena Del Rosario Cappellari
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Julieta Chiappero
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Walter Giordano
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Erika Banchio
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| |
Collapse
|
10
|
Álvarez-Lagazzi AP, Cabrera N, Francis F, Ramírez CC. Bacillus subtilis (Bacillales, Bacillaceae) Spores Affect Survival and Population Growth in the Grain Aphid Sitobion avenae (Hemiptera, Aphididae) in Relation to the Presence of the Facultative Bacterial Endosymbiont Regiella insecticola (Enterobacteriales, Enterobacteriaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2043-2050. [PMID: 34463330 DOI: 10.1093/jee/toab164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The grain aphid Sitobion avenae (Fabricius) is one of the most important cereal pests, damaging crops through sap sucking and virus transmission. Sitobion avenae harbors the secondary endosymbiont Regiella insecticola, which is highly prevalent in populations in south-central Chile and other regions of the world. In order to develop ecological alternatives for biological control, we studied the effect of applying the spores of a strain of the bacterium Bacillus subtilis on the survival and fecundity of the most prevalent genotype of S. avenae in central Chile. The strain selected was one that in previous studies had shown the ability to outcompete other bacteria. Using clones of this aphid genotype infected and uninfected with R. insecticola, we found that applying B. subtilis spores through artificial diets and spraying on leaves decreased both adult survival and nymph production. The detection of spores within the aphid body was negatively correlated with nymph production and was lower in the presence of R. insecticola when applied in diets. B. subtilis spores applied on leaves reduced the number of aphids, an effect that was stronger on aphids harboring R. insecticola. A possible interaction between endosymbiotic bacteria and bacterial antagonists within the aphid body is discussed.
Collapse
Affiliation(s)
- Alan P Álvarez-Lagazzi
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| | - Nuri Cabrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Claudio C Ramírez
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| |
Collapse
|
11
|
Up-Regulated Salivary Proteins of Brown Marmorated Stink Bug Halyomorpha halys on Plant Growth-Promoting Rhizobacteria-Treated Plants. J Chem Ecol 2021; 47:747-754. [PMID: 34550513 DOI: 10.1007/s10886-021-01293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) induce systemic resistance (SR) in plants, decreasing the development of phytopathogens. The FZB42 strain of Bacillus velezensis is known to induce an SR against pathogens in various plant species. Previous studies suggested that it could also influence the interactions between plants and associated pests. However, insects have developed several strategies to counteract plant defenses, including salivary proteins that allow the insect escaping detection, manipulating defensive pathways to its advantage, deactivating early signaling processes, or detoxifying secondary metabolites. Because Brown Marmorated Stink Bug (BMSB) Halyomorpha halys is highly invasive and polyphagous, we hypothesized that it could detect the PGPR-induced systemic defenses in the plant, and efficiently adapt its salivary compounds to counteract them. Therefore, we inoculated a beneficial rhizobacterium on Vicia faba roots and soil, previous to plant infestation with BMSB. Salivary gland proteome of BMSB was analyzed by LC-MS/MS and a label-free quantitative proteomic method. Among the differentially expressed proteins, most were up-regulated in salivary glands of insects exposed to PGPR-treated plants for 24 h. We could confirm that BMSB was confronted with a stress during feeding on PGPR-treated plants. The to-be-confirmed defensive state of the plant would have been rapidly detected by the invasive H. halys pest, which consequently modified its salivary proteins. Among the up-regulated proteins, many could be associated with a role in plant defense counteraction, and more especially in allelochemicals detoxification or sequestration.
Collapse
|
12
|
Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13052856] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review presents a comprehensive and systematic study of the field of bacterial plant biostimulants and considers the fundamental and innovative principles underlying this technology. Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained substantial and significant heed worldwide as an environmentally friendly alternative to sustainable agricultural production. At present, there is an increasing curiosity in industry and researchers about microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play plausible roles to promote/stimulate crop plant growth through several mechanisms that include (i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn), organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals by using different modes of action; and (v) plant defense induction modes. Presented here is a brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current food crisis.
Collapse
|