1
|
Lu ZJ, Xia T, Zhang C, He Q, Zhong H, Fu SC, Yuan XF, Liu XQ, Liu YX, Chen W, Yi L, Yu HZ. Characterization of an RR-2 cuticle protein DcCP8 and its potential application based on SPc nanoparticle-wrapped dsRNA in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:6262-6275. [PMID: 39092895 DOI: 10.1002/ps.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The insect cuticle consists of chitin fibers and a protein matrix, which plays an important role in protecting the body from invasion of various pathogens and prevents water loss. Periodic synthesis and degradation of the cuticle is required for the growth and development of insects. Key genes involved in cuticle formation have long been considered a potential target for pest control. RESULTS In this study, a member of the RR-2 subfamily of cuticular protein 8 (DcCP8) was identified from the Diaphorina citri genome database. Immunofluorescence analysis suggested that DcCP8 was mainly located in the Diaphorina citri exocuticle and can be induced to up-regulate 12 h following 20-hydroxyecdysone (20E) treatment. Silencing of DcCP8 by RNA interference (RNAi) significantly disrupted the metamorphosis to the adult stage, and improved the permeability of the cuticle. Transmission electron microscopy (TEM) analysis revealed that the synthesis of the exocuticle was impressed after silencing of DcCP8. Furthermore, the recombinant DcCP8 protein exhibited chitin-binding properties in vitro, down-regulation of DcCP8 significantly inhibited expression levels of chitin metabolism-related genes. Additionally, a sprayable RNAi method targeting DcCP8 based on star polycation (SPc) nanoparticles-wrapped double-stranded RNA (dsRNA) significantly increased Diaphorina citri mortality. Transcriptome sequencing further confirmed that genes associated with the endocytic pathway and immune response were up-regulated in Diaphorina citri after SPc treatment. CONCLUSIONS The current study indicated that DcCP8 is critical for the formation of Diaphorina citri exocuticles, and lays a foundation for Diaphorina citri control based on large-scale dsRNA nanoparticles. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shang-Cheng Fu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Fang Yuan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
2
|
Zeng MZ, Zhou W, Wen SS, Wu H, Zhang Q, Fu KY, Guo WC, Shi JF. Identification and Functional Insights of Knickkopf Genes in the Larval Cuticle of Leptinotarsa decemlineata. INSECTS 2024; 15:623. [PMID: 39194827 DOI: 10.3390/insects15080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest of potato crops. While Knickkopf (Knk) genes are essential for insect cuticle formation, their roles in pests like L. decemlineata remain unclear. This study aims to identify and characterize Knk genes in L. decemlineata and explore their functions in larval development and cuticle integrity. We used genomic and transcriptomic databases to identify LdKnk-family genes, validated through RT-PCR and RACE. Gene expression was analyzed at various developmental stages and tissues using qRT-PCR. RNA interference (RNAi) and Transmission electron microscopy (TEM) were applied to determine the functional roles of these genes. Four LdKnk-family genes were identified. Spatio-temporal expression analysis indicated significant gene expression during larval molting and pupal stages, especially in the epidermis. RNAi experiments showed that silencing LdKnk and LdKnk3-5' led to reduced larval weight, cuticle thinning, and increased mortality, while LdKnk3-FL knockdown caused abnormal cuticle thickening and molting disruptions. LdKnk2 knockdown increased epicuticle and endocuticle thickness without visible phenotypic changes. The study highlights the essential roles of LdKnk-family genes in maintaining cuticle structure and integrity, suggesting their potential as targets for RNAi-based pest control.
Collapse
Affiliation(s)
- Mu-Zi Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shan-Shan Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hao Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kai-Yun Fu
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Wen-Chao Guo
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Ji-Feng Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhang Q, Zhang C, Zhong H, He Q, Xia ZY, Hu Y, Liao YX, Yi L, Lu ZJ, Yu HZ. A Combinatorial Single-Molecule Real-Time and Illumina Sequencing Analysis of Postembryonic Gene Expression in the Asian Citrus Psyllid Diaphorina citri. INSECTS 2024; 15:391. [PMID: 38921106 PMCID: PMC11203772 DOI: 10.3390/insects15060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Huanglongbing (HLB) is a systemic plant disease caused by 'Candidatus Liberibacter asiaticus (CLas)' and transmitted by Diaphorina citri. D. citri acquires the CLas bacteria in the nymph stage and transmits it in the adult stage, indicating that molting from the nymph to adult stages is crucial for HLB transmission. However, the available D. citri reference genomes are incomplete, and gene function studies have been limited to date. In the current research, PacBio single-molecule real-time (SMRT) and Illumina sequencing were performed to investigate the transcriptome of D. citri nymphs and adults. In total, 10,641 full-length, non-redundant transcripts (FLNRTs), 594 alternative splicing (AS) events, 4522 simple sequence repeats (SSRs), 1086 long-coding RNAs (lncRNAs), 281 transcription factors (TFs), and 4459 APA sites were identified. Furthermore, 3746 differentially expressed genes (DEGs) between nymphs and adults were identified, among which 30 DEGs involved in the Hippo signaling pathway were found. Reverse transcription-quantitative PCR (RT-qPCR) further validated the expression levels of 12 DEGs and showed a positive correlation with transcriptome data. Finally, the spatiotemporal expression pattern of genes involved in the Hippo signaling pathway exhibited high expression in the D. citri testis, ovary, and egg. Silencing of the D. citri transcriptional co-activator (DcYki) gene significantly increased D. citri mortality and decreased the cumulative molting. Our results provide useful information and a reliable data resource for gene function research of D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Zhao-Ying Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu Hu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu-Xin Liao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Wu P, He J, Ge Y, Liu Z, Zhang R. Comparison of Predatory Performance among Three Ladybird Species, Harmonia axyridis, Coccinella septempunctata and Hippodamia variegata, Feeding on Goji Berry Psyllid, Bactericera gobica. INSECTS 2023; 15:19. [PMID: 38249025 PMCID: PMC10816942 DOI: 10.3390/insects15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
The psyllid Bactericera gobica is a serious pest in goji berry orchards. The current primary psyllid control methods involve chemical pesticides, which pose potential risks to human health and the environment. The implementation and promotion of biological control agents should receive increased attention as an alternative approach to safeguarding goji berry orchards. To compare the predatory performance of three potential biocontrol agents of psyllids, including Harmonia axyridis, Coccinella septempunctata and Hippodamia variegata, the functional response and intraspecific interactions of adult ladybirds were studied under laboratory conditions. We observed a significantly higher searching efficiency (0.84 ± 0.09) in H. axyridis when preying on psyllids compared to H. variegata (0.55 ± 0.05), whereas the handling time for psyllids was considerably longer in H. axyridis (7.33 ± 0.83 min) than in H. variegata (5.67 ± 0.97 min). The impact of intraspecific interactions on H. variegata (0.44 ± 0.04) was significantly greater than that on C. septempunctata (0.29 ± 0.03), whereas the maximum consumption by C. septempunctata (223.35 ± 41.3) significantly exceeded that of H. variegata (133.4 ± 26.9). Our study suggests that each of these three ladybird species possesses distinct advantages as a potential predator of psyllids. However, further field studies are required to determine the most promising ladybird species for rapid impact through inundative biological control, taking into consideration the specific environmental adaptability of each ladybird species. The present study is expected to provide evidence that supports the potential of incorporating promising ladybird species as an effective biological control agent in goji berry orchard management programs.
Collapse
Affiliation(s)
- Pengxiang Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jia He
- Institute of Plant Protection, Academy of Ningxia Agriculture and Forestry Science, Yinchuan 750002, China;
| | - Yang Ge
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Zhanghui Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Q, Xia T, Wang AY, Liu Y, Li NY, Yi L, Lu ZJ, Yu HZ. Alternative splicing of chitin deacetylase 2 regulates chitin and fatty acid metabolism in Asian citrus psyllid, Diaphorina citri. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22050. [PMID: 37622383 DOI: 10.1002/arch.22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Chitin plays an important role in the development and molting of insects. The key genes involved in chitin metabolism were considered promising targets for pest control. In this study, two splice variants of chitin deacetylase 2 (CDA2) from Diaphorina citri were identified, including DcCDA2a and DcCDA2b. Bioinformatics analysis revealed that DcCDA2a and DcCDA2b encoded 550 and 544 amino acid residues with a signal peptide, respectively. Spatio-temporal expression patterns analysis showed that DcCDA2a and DcCDA2b were highly expressed in D. citri wing and nymph stages. Moreover, DcCDA2a and DcCDA2b expression levels were induced by 20-hydroxyecdysone (20E). Silencing DcCDA2a by RNA interference (RNAi) significantly disrupted the D. citri molting and increased D. citri mortality and malformation rate, whereas inhibition of DcCDA2b resulted in a semimolting phenotype. Furthermore, silencing DcCDA2a and DcCDA2b significantly suppressed D. citri chitin and fatty acid metabolism. Our results indicated that DcCDA2 might play crucial roles in regulating D. citri chitin and fatty acid metabolism, and it could be used as a potential target for controlling D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ai-Yun Wang
- Department of Citrus Pest Control, Fruit Bureau of Xinfeng County, Ganzhou, China
| | - Yan Liu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning-Yan Li
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Long Yi
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Zhan-Jun Lu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Hai-Zhong Yu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|
6
|
Zhang JB, Zou XJ, Zhang Q, Wang AY, Amir MB, Du YM, Liu XQ, Chen W, Lu ZJ, Yu HZ. Quantitative ubiquitylome crosstalk with proteome analysis revealed cytoskeleton proteins influence CLas pathogen infection in Diaphorina citri. Int J Biol Macromol 2023; 232:123411. [PMID: 36706880 DOI: 10.1016/j.ijbiomac.2023.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening disease, is caused by Candidatus Liberbacter asiaticus (CLas) and transmitted by Diaphorina citri. Previous studies reported that CLas infection significantly influences the structure of the D. citri cytoskeleton. However, the mechanisms through which CLas manipulates cytoskeleton-related proteins remain unclear. In this study, we performed quantitative ubiquitylome crosstalk with the proteome to reveal the roles of cytoskeleton-related proteins during the infection of D. citri by CLas. Western blotting revealed a significant difference in ubiquitination levels between the CLas-free and CLas-infected groups. According to ubiquitylome and 4D label-free proteome analysis, 343 quantified lysine ubiquitination (Kub) sites and 666 differentially expressed proteins (DEPs) were identified in CLas-infected groups compared with CLas-free groups. A total of 53 sites in 51 DEPs were upregulated, while 290 sites in 192 DEPs were downregulated. Furthermore, functional enrichment analysis indicated that 18 DEPs and 21 lysine ubiquitinated proteins were associated with the cytoskeleton, showing an obvious interaction. Ubiquitination of D. citri tropomyosin was confirmed by immunoprecipitation, Western blotting, and LC-MS/MS. RNAi-mediated knockdown of tropomyosin significantly increased CLas bacterial content in D. citri. In summary, we provided the most comprehensive lysine ubiquitinome analysis of the D. citri response to CLas infection, thus furthering our understanding of the role of the ubiquitination of cytoskeleton proteins in CLas infection.
Collapse
Affiliation(s)
- Jin-Bo Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiao-Jin Zou
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ai-Yun Wang
- Fruit Bureau of Xinfeng County, Ganzhou, Jiangxi 341000, China
| | - Muhammad Bilal Amir
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
7
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
8
|
Das J, Kumar R, Shah V, Sharma AK. Functional characterization of chitin synthesis pathway genes, HaAGM and HaUAP, reveal their crucial roles in ecdysis and survival of Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105273. [PMID: 36464378 DOI: 10.1016/j.pestbp.2022.105273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The chitin metabolic pathway is one of the most lucrative targets for designing pest management regimes. Inhibition of the chitin synthesis pathway causes detrimental effects on the normal growth and development of insects. Phospho-N-acetylglucosamine mutase (AGM) and UDP-N-acetylglucosamine pyrophosphorylase (UAP) are two key chitin biosynthesis enzymes in insects including Helicoverpa armigera, a pest of global significance. In the present study, we have identified, cloned and recombinantly expressed AGM and UAP from H. armigera (HaAGM and HaUAP). Biochemical characterization of recombinant HaAGM and HaUAP exhibited high affinities for their natural substrates N-acetyl glucosamine-6-phosphate (Km 38.72 ± 2.41) and N-acetyl glucosamine-1-phosphate (Km 3.66 ± 0.13), respectively. In the coupled enzyme-catalytic assay, HaAGM and HaUAP yielded the end-products, inorganic pyrophosphate and UDP-GlcNAc, confirming their active participation in the chitin synthesis pathway of H. armigera. Gene expression profiling revealed that HaAGM and HaUAP genes were expressed in all developmental stages and key tissues. These genes also showed substantial responses towards the moulting hormone 20-hydroxyecdysone and chitin biosynthesis inhibitor, novaluron. Remarkably, the RNAi-mediated knockdown of either HaAGM or HaUAP led to severe developmental deformities and significant mortality ranging from 65.61 to 72.54%. Overall findings suggest that HaAGM and HaUAP play crucial roles in the ecdysis and survival of H. armigera. Further, these genes could serve as potential targets for designing pest management strategies for H. armigera.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
9
|
Mondal M, Carver M, Brown JK. Characteristics of environmental RNAi in potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Front Physiol 2022; 13:931951. [PMID: 36330211 PMCID: PMC9623324 DOI: 10.3389/fphys.2022.931951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) has potential to become a major tool for integrated management of insect pests of agricultural crops based on sequence-specificity and low doses of rapidly biodegradable dsRNA. Deploying ‘environmental RNAi’ for control of insect vectors of plant pathogens is of increasing interest for combatting emerging plant diseases. Hemipteran insect vectors, including psyllids, are vascular feeders, making their development difficult to control specifically by targeting with pesticidal chemistries. Psyllids transmit “Candidatus Liberibacter solanacearum” the causal organism of potato zebra chip and tomato vein greening diseases, transmitted, respectively, by the potato or tomato psyllid (PoP). Until now, the optimal effective concentration(s) of double-stranded RNA (dsRNA) required for significant gene knockdown and RNAi persistence in PoP have not been determined. The objective of this study was to optimize RNAi in young PoP adults and 3rd instars for screening by oral delivery of dsRNAs. The minimal effective dsRNA concentrations required for robust knockdown and persistence were evaluated by delivering seven concentrations spanning 0.1 ng/μL to 500 ng/μL over post ingestion-access periods (IAP) ranging from 48 h to 12 days. The PoP gene candidates evaluated as targets were vacuolar ATPase subunit A, clathrin heavy chain, and non-fermenting protein 7, which were evaluated for knockdown by qPCR amplification. The minimum and/or the second most effective dsRNA concentration resulting in effective levels of gene knockdown was 100 ng/μL for all three targets. Higher concentrations did not yield further knockdown, indicating potential RISC saturation at the higher doses. Gene silencing post-IAP of 100 ng/μL dsRNA persisted for 3–5 days in adults and nymphs, with the PoP 3rd instar, followed by teneral and mature adults, respectively, exhibiting the most robust RNAi-response.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- RNAissance Ag LLC, St. Louis, MO, United States
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Judith K. Brown,
| |
Collapse
|
10
|
Zhang JB, Lu ZJ, Yu HZ. Silencing of Glycogen Synthase Kinase 3 Significantly Inhibits Chitin and Fatty Acid Metabolism in Asian Citrus Psyllid, Diaphorina citri. Int J Mol Sci 2022; 23:ijms23179654. [PMID: 36077052 PMCID: PMC9455978 DOI: 10.3390/ijms23179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen is a predominant carbohydrate reserve in various organisms, which provides energy for different life activities. Glycogen synthase kinase 3 (GSK3) is a central player that catalyzes glucose and converts it into glycogen. In this study, a GSK3 gene was identified from the D. citri genome database and named DcGSK3. A reverse transcription quantitative PCR (RT-qPCR) analysis showed that DcGSK3 was expressed at a high level in the head and egg. The silencing of DcGSK3 by RNA interference (RNAi) led to a loss-of-function phenotype. In addition, DcGSK3 knockdown decreased trehalase activity, glycogen, trehalose, glucose and free fatty acid content. Moreover, the expression levels of the genes associated with chitin and fatty acid synthesis were significantly downregulated after the silencing of DcGSK3. According to a comparative transcriptomics analysis, 991 differentially expressed genes (DEGs) were identified in dsDcGSK3 groups compared with dsGFP groups. A KEGG enrichment analysis suggested that these DEGs were primarily involved in carbon and fatty acid metabolism. The clustering analysis of DEGs further confirmed that chitin and fatty acid metabolism-related DEGs were upregulated at 24 h and were downregulated at 48 h. Our results suggest that DcGSK3 plays an important role in regulating the chitin and fatty acid metabolism of D. citri.
Collapse
Affiliation(s)
- Jin-Bo Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou 341000, China
- Correspondence:
| |
Collapse
|