1
|
Rupp T, Oelschlägel B, Berjano R, Mahfoud H, Buono D, Wenke T, Rabitsch K, Bächli G, Stanojlovic V, Cabrele C, Xiong W, Knaden M, Dahl A, Neinhuis C, Wanke S, Dötterl S. Chemical imitation of yeast fermentation by the drosophilid-pollinated deceptive trap-flower Aristolochia baetica (Aristolochiaceae). PHYTOCHEMISTRY 2024; 224:114142. [PMID: 38762152 DOI: 10.1016/j.phytochem.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.
Collapse
Affiliation(s)
- Thomas Rupp
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Birgit Oelschlägel
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Regina Berjano
- Department of Vegetal Biology and Ecology, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Hafez Mahfoud
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Daniele Buono
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Torsten Wenke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Katharina Rabitsch
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Gerhard Bächli
- Institut für Evolutionsbiologie und Umweltforschung, Universität Zürich-Irchel, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Vesna Stanojlovic
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Wujian Xiong
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria; Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxingxi Road 166, 621000, Mianyang, China
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany; Departamento de Botánica, Instituto de Biología, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-367, 04510, Coyoacan, Distrito Federal, Mexico; Institut für Ökologie, Evolution und Diversiät, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Abteilung Botanik und molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
2
|
Conroy C, Fountain MT, Whitfield EC, Hall DR, Farman D, Bray DP. Methyl N,N-dimethylanthranilate and ethyl propionate: repellents effective against spotted wing drosophila, Drosophila suzukii. PEST MANAGEMENT SCIENCE 2024; 80:3160-3171. [PMID: 38348748 DOI: 10.1002/ps.8020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an economically important pest of soft and stone fruit crops. The aim of this study was to identify repellents, formulated in dispensers, which could protect crops from D. suzukii. Fourteen potential repellents were screened against summer- and winter-morph D. suzukii through electroantennography and behavioural bioassays. Repellents effective in the laboratory were tested in polytunnels to determine their efficacy in reducing catches in fruit-baited traps. Further trials of three potential repellents were conducted to determine the distances over which repellent dispensers could reduce D. suzukii emergence in a strawberry crop. RESULTS All 14 chemicals screened were detected by the antennae of both D. suzukii morphs. Hexyl acetate and geosmin both elicited a significantly greater corrected EAG response in summer morphs than winter morphs. Summer-morph D. suzukii were repelled by butyl acetate, ethyl propionate, methyl N,N-dimethyl anthranilate, geosmin, methyl salicylate, DEET and benzaldehyde at one or more doses test in laboratory bioassays. Winter morphs were repelled by ethyl propionate, methyl anthranilate, methyl N,N-dimethyl anthranilate, DEET, benzaldehyde and butyl anthranilate at one or more of the doses tested in the laboratory. Ethyl propionate, methyl N,N-dimethylanthranilate and benzaldehyde repelled both morphs from fruit-baited traps in polytunnel trapping trials. Ethyl propionate and methyl N,N-dimethylanthranilate reduced emergence of D. suzukii in a strawberry crop over 3-5 m. CONCLUSIONS Ethyl propionate and methyl N,N-dimethylanthranilate may protect strawberry crops against D. suzukii. Future work should test these repellents in combination with attractants in a 'push-pull' strategy. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christina Conroy
- NIAB East Malling, East Malling, UK
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | | | | | - David R Hall
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | - Dudley Farman
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | - Daniel P Bray
- Natural Resources Institute, University of Greenwich, Chatham, UK
| |
Collapse
|
3
|
de Albuquerque Melo Xavier JK, de Jesus Alves Miranda A, Dos Santos Soares Buna S, da Rocha CQ, da Silva Lima A. Neotropical Flora's Contribution to the Development of Biorational Products for Drosophila suzukii Control. NEOTROPICAL ENTOMOLOGY 2024; 53:400-414. [PMID: 38214825 DOI: 10.1007/s13744-023-01123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Essential oils (EOs) produced by aromatic plants belonging to different families, such as Asteraceae, Lamiaceae, Lauraceae, Myrtaceae, and Piperaceae, are generally suggested as potential sources of new molecules with insecticidal activity. The EOs are constituted bioactive molecules that may have to control Drosophila suzukii (Matsumura), a serious economic invasive pest of small fruits worldwide. Currently, the control strategy against D. suzukii depends especially on treatment with synthetic insecticides. Due to impacts to human health and the environment, efforts have been made to seek efficient insecticides in chemical pest control. Thus, sixty-five oils extracted from plants were selected to find new alternative types of insecticides active against D. suzukii. The monoterpenes, such as limonene, α-pinene, 1,8-cineole, linalool, menthol, geranial, and neral, were the most representative, which stand out for their insecticidal efficiency. The OEs demonstrated to be used in the management of D. suzukii, thus being an effective strategy to control this pest, ensuring crop protection and agricultural sustainability. Therefore, the substitution by natural products or eco-friendly pesticides instead of synthetic pesticides represents a notable option to mitigate harmful effects on human health and the environment.
Collapse
Affiliation(s)
| | - Amanda de Jesus Alves Miranda
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Samuel Dos Santos Soares Buna
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Claudia Quintino da Rocha
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Aldilene da Silva Lima
- Programa de Pós-Graduação em Agroecologia, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brazil.
| |
Collapse
|
4
|
Kačániová M, Vukic M, Vukovic NL, Čmiková N, Verešová A, Schwarzová M, Babošová M, Porhajašová JI, Kluz M, Waszkiewicz-Robak B, Hsouna AB, Saad RB, Garzoli S. An In-Depth Study on the Chemical Composition and Biological Effects of Pelargonium graveolens Essential Oil. Foods 2023; 13:33. [PMID: 38201061 PMCID: PMC10778218 DOI: 10.3390/foods13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The essential oil of Pelargonium graveolens (PGEO) is identified in the literature as a rich source of bioactive compounds with a high level of biological activity. This study aimed to examine the chemical profile of PGEO as well as its antioxidant, antibacterial, antibiofilm, and insecticidal properties. Its chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS), achieving comprehensive identification of 99.2% of volatile compounds. The predominant identified compounds were β-citronellol (29.7%) and geraniol (14.6%). PGEO's antioxidant potential was determined by means of DPPH radical and ABTS radical cation neutralization. The results indicate a higher capacity of PGEO to neutralize the ABTS radical cation, with an IC50 value of 0.26 ± 0.02 mg/mL. Two techniques were used to assess antimicrobial activity: minimum inhibitory concentration (MIC) and disk diffusion. Antimicrobial evaluation using the disk diffusion method revealed that Salmonella enterica (14.33 ± 0.58 mm), which forms biofilms, and Priestia megaterium (14.67 ± 0.58 mm) were most susceptible to exposure to PGEO. The MIC assay demonstrated the highest performance of this EO against biofilm-forming S. enterica (MIC 50 0.57 ± 0.006; MIC 90 0.169 ± 0.08 mg/mL). In contrast to contact application, the assessment of the in situ vapor phase antibacterial activity of PGEO revealed significantly more potent effects. An analysis of antibiofilm activity using MALDI-TOF MS demonstrated PGEO's capacity to disrupt the biofilm homeostasis of S. enterica growing on plastic and stainless steel. Additionally, insecticidal evaluations indicated that treatment with PGEO at doses of 100% and 50% resulted in the complete mortality of all Harmonia axyridis individuals.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Milena Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marianna Schwarzová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Mária Babošová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Ivanič Porhajašová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Maciej Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Bożena Waszkiewicz-Robak
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| |
Collapse
|
5
|
Bošković D, Vuković S, Lazić S, Baser N, Čulum D, Tekić D, Žunić A, Šušnjar A, Šunjka D. Insecticidal Activity of Selected Essential Oils against Drosophila suzukii (Diptera: Drosophilidae). PLANTS (BASEL, SWITZERLAND) 2023; 12:3727. [PMID: 37960084 PMCID: PMC10647715 DOI: 10.3390/plants12213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
The spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive polyphagous pest of soft-skinned fruit that has started to threaten small fruit production in Europe since 2008. High reproductive capacity, short generation time, and difficulties in visualizing early damage contribute to its rapid spread. Currently, the control strategy against D. suzukii mostly relies on treatment with synthetic insecticides. Keeping in mind that this pest causes the greatest damage during the harvesting period, control using chemicals is not recommended due to the increased risk of high pesticide residue levels in the fruit. With the aim of reducing the use of insecticides, there is a need for developing an environmentally safer way of control. Alternative solutions could rely on the use of essential oils (EOs), which can be used in conventional and organic production systems. Four essential oils, geranium (Pelargonium graveolens), dill (Anethum graveolens), Scots pine (Pinus sylvestris), and bergamot (Citrus bergamia), were assessed for their insecticidal effects using four different tests (contact toxicity, fumigant-contact toxicity, repellent effect, and multiple-choice tests). The EOs applied were dissolved in acetone at three different concentrations. The most promising one was the geranium essential oil, which had the best effect in all conducted tests, even at the lowest applied concentration. Geranium oil caused very high mortality (95%), even at the lowest concentration applied, after 24 h in the fumigant-contact test, and it caused a mortality of over 85% in the contact test. It was also noticed that geranium demonstrated a deterrent effect by repelling females from laying eggs for four days after at the lowest applied concentration. Scots pine and dill EOs have moderate to strong effects in most tests. The mortality of 100% was achieved for the highest applied concentration in the fumigant-contact and contact tests. Bergamot EO did not have any significant insecticidal activity. Geranium, Scots pine, and dill have great potential to be used as an environmentally friendly way of controlling D. suzukii as they exhibit deterrent, repellent, and insecticidal effects.
Collapse
Affiliation(s)
- Dragana Bošković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Slavica Vuković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Sanja Lazić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Nuray Baser
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy;
| | - Dušan Čulum
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dragana Tekić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Antonije Žunić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Aleksandra Šušnjar
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Dragana Šunjka
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| |
Collapse
|
6
|
Nesterkina M, Bilokon S, Alieksieieva T, Kravchenko I, Hirsch AK. Genotoxic and mutational potential of monocyclic terpenoids (carvacrol, carvone and thymol) in Drosophila melanogaster. Toxicol Rep 2023; 10:327-333. [PMID: 36911165 PMCID: PMC9996437 DOI: 10.1016/j.toxrep.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Genotoxicity and mutagenicity of monoterpene carvone along with the related monoterpene alcohols - carvacrol and thymol have been studied using Drosophila melanogaster as model system. The viability, pre-imaginal stage duration, level of dominant lethal mutations, unequal crossover in the Bar mutant of D. melanogaster and the influence of monocyclic terpenoids on the multiplication of the nuclear genome in salivary gland cells were investigated. The compounds tested after oral administration (0.02% in 1,2-propylene glycol) influence the degree of chromosome polyteny in salivary gland cells of D. melanogaster larvae. Among the terpenoids examined, carvacrol exhibited the most significant impact on imago lifespan, frequency of dominant lethal mutations, unequal crossover in the Bar mutant when added to the culture medium. Oral administration of terpenoids increases the average level of chromosome polyteny with the highest value for carvacrol - 1178 C compared to control (776 C). The conceivable mechanism of action for monocyclic terpenoids associated with the impact on juvenile hormone activity is debated.
Collapse
Affiliation(s)
- Mariia Nesterkina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, Saarbrücken 66123, Germany
- Department of Genetics and Molecular Biology, Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
| | - Svitlana Bilokon
- Department of Genetics and Molecular Biology, Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
| | - Tetiana Alieksieieva
- Department of Genetics and Molecular Biology, Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
| | - Iryna Kravchenko
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, Saarbrücken 66123, Germany
- Department of Genetics and Molecular Biology, Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| |
Collapse
|
7
|
Monarda didyma Hydrolate Affects the Survival and the Behaviour of Drosophila suzukii. INSECTS 2022; 13:insects13030280. [PMID: 35323578 PMCID: PMC8955400 DOI: 10.3390/insects13030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary During the steam distillation of aromatic plants, two main fractions are usually obtained: the hydrophobic essential oils and the hydrophilic fraction commonly known as hydrolate (HY). The essential oils are largely used in several industry fields, including the agricultural industry as biopesticides. Residual HYs, instead, are often discarded as by-products of little or no value. Our research pointed out that also HYs have biological activity, suggesting their potential use in plant-based strategy for the pest control. In more detail, we investigated the insecticidal properties of the hydrolate from Monarda didyma, scarlet beebalm, towards Drosophila suzukii. Using specific molecular and behavioural assays, we showed that M. didyma hydrolate affected the fitness and behaviour of D. suzukii, providing new insights in the D. suzukii control strategies through M. didyma hydrolate. Abstract Drosophila suzukii (Matsumara) is an herbivorous pest whose control in the field with conventional chemical is particularly difficult and has important drawbacks. Here, we investigated the insecticidal properties of hydrolate from Monarda didyma, scarlet beebalm, an aromatic herb in the Lamiaceae family. The identification of volatile organic compounds (VOCs) by CG–MS systems revealed that thymol (38%) and carvacrol (59%) were the most abundant VOCs in the hydrolate. M. didyma hydrolate did not show fumigant toxicity. Conversely, in contact assays, M. didyma hydrolate showed a LC50 of 5.03 µL mL−1, 48 h after the application on D. suzukii adults. Expression of detoxification genes increased in flies that survived the LC50 application. Furthermore, toxicity persisted for 7 days after the treatment in the survival evaluation. Artificial diet assays with 100 and 1000 µL mL−1 of M. didyma hydrolate resulted in a significant decrease in total food intake in both male and female D. suzukii adults. In addition, electropenetrography (EPG) showed that the D. suzukii females’ feeding behaviour was altered in hydrolate-treated diets. The hydrolate also caused a significant reduction in the number of eggs laid in two different oviposition assays. Overall, our findings provide a new perspective for the improvement of D. suzukii control strategies through M. didyma hydrolate.
Collapse
|
8
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
9
|
Kraft LJ, Sit TL, Diepenbrock LM, Ashrafi H, Aryal R, Fernandez GE, Burrack HJ. Detection of Fruit Meals Within Laboratory-Raised and Field-Trapped Adult Drosophila suzukii (Diptera: Drosophilidae) Guts. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The feeding habits of adult Brachycera are understudied and may provide important context for understanding invasive pest biology, as with the polyphagous small fruit pest Drosophila suzukii. We developed molecular methods to study adult D. suzukii gut content in order to understand its feeding habits. We designed and verified two primer pairs specific for either blueberries or blackberries and used a qPCR melt curve analysis to determine whether we can detect the presence or absence of berry feeding by adult flies. In a laboratory assay, the blueberry fly meal DNA can be detected for longer periods than the blackberry meal DNA. Generally, female gut contents are less variable than male gut contents. We also tested recently emerged flies that were not fed as adults but developed as larvae in either blueberries or blackberries. Some adult flies from each fruit had detectable fruit DNA in their gut, which could be due to pupal meconium feeding after emergence. Next, we aimed to test the primers in the field to develop techniques to track fruit feeding by D. suzukii in its natural field environment. First, to identify the most appropriate collection method, we determined how long we could detect fruit DNA, using previously developed primers within D. suzukii gut preserved in four types of trap fluid in the laboratory. The likelihood of detecting blackberry DNA differed by day, trap fluid, and between sexes. For the blueberry primer, the possibility of detecting blueberry DNA differed by trap fluid only. Based on those results, we used RV antifreeze with a Scentry SWD lure in field trials at two research station locations, one containing blackberries and one with blueberries. We established transects away from each fruit planting and collected up to 120 total flies at each point along transects. There were no significant differences in the number of flies containing berry DNA among collection points along the transect in both locations. These results suggest that adult flies move between crop and non-crop habitats and may not be highly dependent on fruit food resources.
Collapse
|
10
|
Cha DH, Roh GH, Hesler SP, Wallingford A, Stockton DG, Park SK, Loeb GM. 2-Pentylfuran: a novel repellent of Drosophila suzukii. PEST MANAGEMENT SCIENCE 2021; 77:1757-1764. [PMID: 33236507 DOI: 10.1002/ps.6196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura), spotted-wing drosophila (SWD), is a major invasive pest of soft-skinned fruits in North America and Europe. Although insecticides are currently the primary method of SWD control, it is imperative to develop alternative management approaches, such as behavioral control through the use of repellents and attractants. This study explores the repellent properties of 2-pentylfuran as an oviposition deterrent on raspberries. RESULTS 2-Pentylfuran was found to be aversive to SWD in laboratory multiple-choice tests. When co-released from a vial (loaded as neat compound) with a synthetic SWD lure, 2-pentylfuran reduced SWD attraction to the SWD lure by 98% and the effect appeared 17% stronger compared to 1-octen-3-ol, a known SWD repellent. Releasing 50% 2-pentylfuran mixed with mineral oil from a vial located near ripe raspberries resulted in 30% reduction in SWD oviposition in the field. In laboratory no-choice assays, 2-pentylfuran reduced SWD oviposition on raspberries above 2.5 mg h-1 with greater repellency achieved at higher release rates. A release rate of 10 mg h-1 from a polyethylene sachet reduced egg-laying on raspberries by 60% in a semifield cage choice experiment. In a field experiment using fruiting raspberry clusters, 14 mg h-1 release rate of 2-pentylfuran was effective at reducing SWD infestations by 56% compared to untreated plots. CONCLUSION 2-Pentylfuran acts as a repellent for SWD and can significantly reduce fruit infestations under field conditions and high SWD pressure. Given that 2-pentylfuran is a registered food additive and generally regarded as safe, 2-pentylfuran has a potential use in behavioral control strategies against SWD. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Dong H Cha
- USDA-ARS, Daniel K Inouye US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Gwang H Roh
- USDA-ARS, Daniel K Inouye US Pacific Basin Agricultural Research Center, Hilo, HI, USA
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA
| | | | | | | | - Shinyoung K Park
- USDA-ARS, Daniel K Inouye US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | | |
Collapse
|
11
|
Eben A, Sporer F, Vogt H, Wetterauer P, Wink M. Search for Alternative Control Strategies of Drosophila suzukii (Diptera: Drosophilidae): Laboratory Assays Using Volatile Natural Plant Compounds. INSECTS 2020; 11:insects11110811. [PMID: 33217940 PMCID: PMC7698706 DOI: 10.3390/insects11110811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Simple Summary Adult flies of the invasive fruit pest, Drosophila suzukii, commonly known as spotted wing drosophila, showed susceptibility towards several natural plant products tested in bioassays under laboratory conditions. Depending on the compound tested, contact toxicity, modified food uptake, or reduction in numbers of eggs deposited and hatched was found. The natural plant substances thereby identified will be further assessed under field conditions and can be used to develop innovative pest control strategies. Abstract Drosophila suzukii (Diptera: Drosophilidae), is native to southeastern Asia and invaded Europe during the past decade. It causes serious economic damage in cherries and soft fruits. Control strategies rely on few insecticides with varying success. Due to environmental concern, the use of synthetic chemicals is restricted. Therefore, research effort is put into the quest for alternative substances applicable in chemical pest control. In laboratory assays, we tested 17 volatile plant compounds from different chemical classes for their contact toxicity, feeding modification, and oviposition repellency. Toxicity through contact with treated surfaces was evaluated after 1 h, 4 h, and 24 h; effects on food uptake were observed with capillary feeding (CAFE)—tests and oviposition trials compared egg numbers laid in raspberry medium with or without treated filter paper. Cinnamon oil and its components had the highest contact toxicity with an LC90 = 2–3%, whereas lemongrass oil, its main components, and farnesol were less toxic (LC90 = 7–9%), and geraniol was the least toxic. In CAFE tests, feeding stimulation was observed through 0.1% and 1% solutions of citronellol, lemongrass oil and farnesol. Cinnamon oil, cinnamaldhyde, and ethyl cinnamate were not consumed at a concentration of 1%. In the presence of citral, eugenol, and lemongrass oil, oviposition was reduced, and in the presence of limonene, no eggs were deposited. The natural products found most efficient in either bioassay will be further tested under field conditions.
Collapse
Affiliation(s)
- Astrid Eben
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Straße 101, 69221 Dossenheim, Germany;
- Correspondence: ; Tel.: +49-(0)6221-86-805-28
| | - Frank Sporer
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Im Neuenheimer Feld 364, Heidelberg University, 69210 Heidelberg, Germany; (F.S.); (P.W.); (M.W.)
| | - Heidrun Vogt
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Straße 101, 69221 Dossenheim, Germany;
| | - Pille Wetterauer
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Im Neuenheimer Feld 364, Heidelberg University, 69210 Heidelberg, Germany; (F.S.); (P.W.); (M.W.)
| | - Michael Wink
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Im Neuenheimer Feld 364, Heidelberg University, 69210 Heidelberg, Germany; (F.S.); (P.W.); (M.W.)
| |
Collapse
|
12
|
Fountain MT, Badiee A, Hemer S, Delgado A, Mangan M, Dowding C, Davis F, Pearson S. The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops. Sci Rep 2020; 10:15358. [PMID: 32958797 PMCID: PMC7506528 DOI: 10.1038/s41598-020-72074-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.
Collapse
Affiliation(s)
| | - Amir Badiee
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.,Lincoln Institute for Agri-Food Technology, University of Lincoln, Riseholme Campus, Lincoln, LN2 2LG, UK
| | - Sebastian Hemer
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.,Berry Garden Growers, Tatlingbury Oast, Tonbridge, Kent, TN12 6RG, UK
| | | | - Michael Mangan
- School of Computer Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.,Department of Computer Science, University of Sheffield, Regent Court, Sheffield, S1 4DP, UK
| | - Colin Dowding
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Frederick Davis
- Department of Chemistry, University of Reading, Whiteknights, RG6 6AD, UK
| | - Simon Pearson
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Riseholme Campus, Lincoln, LN2 2LG, UK
| |
Collapse
|
13
|
Rima M, Chbani A, Roques C, El Garah F. Comparative study of the insecticidal activity of a high green plant (Spinacia oleracea) and a chlorophytae algae (Ulva lactuca) extracts against Drosophila melanogaster fruit fly. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:36-43. [PMID: 32871133 DOI: 10.1016/j.pharma.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Currently, the global interests tend to take advantage of the plant world as a renewable source of a natural and effective molecule, to find an eco-friendly, cost-effective, and less toxic alternative to the current synthetic pesticide. In this context, the present research was carried out in an attempt to study the insecticidal activity of extracts and pigments derived from the green plant Spinacia oleracea and the green alga Ulva lactuca against the fruit fly Drosophila melanogaster as an alternative to chemical insecticide. METHODS The toxicity of the aqueous, acetonic and ethanolic extracts as well as of the purified pigments (Chlorophylls and carotenoids) was determined by complementary in vivo tests (application by spraying oranges, toxicity by ingestion and repellent activity). Interestingly, each one of these methods corresponds to a specific mode of exposure. RESULTS Results showed that acetone extracts, which are rich in green pigments, present the best insecticidal activities. On the other hand, the purified chlorophyllian pigments exhibited an interesting activity only by spraying method. Regarding the repellent activity, the aqueous extract of spinach displayed higher effectiveness. CONCLUSION Our study suggests the potential of tested plant and algal extracts, as well as of chlorophyllian pigments, to provide a safer alternative way to the use of synthetic pesticides.
Collapse
Affiliation(s)
- M Rima
- Laboratory of applied biotechnology, Azm Centre for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El-Mittein Street, Tripoli, Lebanon; Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - A Chbani
- Laboratory of applied biotechnology, Azm Centre for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El-Mittein Street, Tripoli, Lebanon; Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - C Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - F El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
14
|
Gullickson M, Flavin Hodge C, Hegeman A, Rogers M. Deterrent Effects of Essential Oils on Spotted-Wing Drosophila ( Drosophila suzukii): Implications for Organic Management in Berry Crops. INSECTS 2020; 11:insects11080536. [PMID: 32824230 PMCID: PMC7469169 DOI: 10.3390/insects11080536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 12/04/2022]
Abstract
Simple Summary Spotted-wing drosophila (Drosophila suzukii Matsumura; SWD) poses a significant threat to small fruit production world-wide. Though frequent applications of insecticides is the dominant strategy to manage this pest, insecticide resistance is a concern. Resistance has already been reported for one of the only consistently effective insecticides labeled for organic production systems, spinosad, underscoring the need to diversify management strategies. Botanical products, such as essential oils, contain volatile organic compounds (VOCs) which could interfere with SWD preference for or ability to locate host fruit. We conducted laboratory and field studies to determine the efficacy of botanical products (lavender oil, catnip oil, KeyPlex Ecotrol® PLUS, and KeyPlex Sporan® EC2) on preventing SWD infestation in raspberry and blueberry crops. Under laboratory conditions lavender oil, Ecotrol, and Sporan deterred SWD from diet. In the field trials, Ecotrol deterred SWD from raspberries; however, no differences were seen in blueberry infestation. To optimize essential oil deterrents for SWD, such as how to maintain effective concentrations for longer periods of time, further research is needed. Botanical deterrents represent a promising alternative pest management strategy that could be implemented without additional equipment investment from growers, while decreasing the use of broad-spectrum insecticides. Abstract Due to concerns about frequent applications of spinosad and other broad spectrum insecticides for managing spotted-wing drosophila (Drosophila suzukii Matsumura, SWD), we investigated the use of essential oils as an alternative to current insecticides. Essential oils from a number of plant species have been studied for their attraction and deterrence of SWD. However, these botanical products have not been thoroughly tested in the field. We conducted laboratory and field studies to determine the efficacy of botanical products, including lavender (Lavandula angustifolia Mill.) oil, catnip (Nepeta cataria L.) oil, KeyPlex Ecotrol® PLUS, and KeyPlex Sporan® EC2 on preventing SWD infestation in raspberry (Rubus idaeus L.) and blueberry (Vacciniumcorymbosum L.) crops. In a two-choice laboratory bioassay, lavender oil, Ecotrol, and Sporan treatments deterred SWD from a yeast-cornmeal-sugar based fly diet. In the field trials, raspberry fruit treated with Ecotrol had lower SWD infestation (6%), compared to the control (17%), and was comparable to spinosad (6%). No differences were seen in blueberry infestation. The combination of essential oils in Ecotrol may work to decrease SWD fruit infestation under certain conditions in the field, however more research is needed on the longevity of these products.
Collapse
|
15
|
Bedini S, Cosci F, Tani C, Pierattini EC, Venturi F, Lucchi A, Ioriatti C, Ascrizzi R, Flamini G, Ferroni G, Taglieri I, Conti B. Essential Oils as Post-Harvest Crop Protectants against the Fruit Fly Drosophila suzukii: Bioactivity and Organoleptic Profile. INSECTS 2020; 11:insects11080508. [PMID: 32764515 PMCID: PMC7469183 DOI: 10.3390/insects11080508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The spotted-wing drosophila Drosophila suzukii is an invasive small fruit fly that causes extensive damage to many fruit crops. To control this pest, the use of aromatic plants essential oils (EOs) is gaining importance since they are bioactive, biodegradable, and ecologically safe. However, despite of the EOs proved efficacy, they still do not have a widespread application due to their high volatility, composition variability and especially their strong smell. In this study we evaluated not only the EOs bioactivity but also their effects on the organoleptic profile of treated fruits. We tested two EOs extracted from mandarin (Citrus reticulata) and tea tree (Melaleuca alternifolia) very different for composition and smell. Both the EOs were effective in repelling D. suzukii. However, while no negative effects on the organoleptic profiles were detected for the fruits treated with Citrus reticulata EO, the fruits treated with M. alternifolia EO were defined by the panel of experts as “not suitable for consumption”. Overall, our findings indicate that the use of EOs for the post-harvest protection of small fruits is feasible, provided that the EOs have been selected not only for their bioactivity against the insect pest but also for their affinity with the consumers’ sensorial system. Abstract The essential oils extracted from mandarin (Citrus reticulata Blanco) fruits, and from tea tree (Maleleuca alternifolia (Maiden and Betche) Cheel) leaves have been chemically analyzed and tested for their bioactivity against D. suzukii. Besides, to estimate consumers’ acceptability of the essential oil (EO) treatments, we evaluated their impact on the organoleptic characteristics of the EO-treated fruits. The main chemical constituents of the two EOs were 1,8-cineole and 4-terpineol for M. alternifolia (22.4% and 17.6% of the total components, respectively), and limonene (83.6% of the total components) for C. reticulata. The behavioral tests indicate that the two EOs are able to deter D. suzukii oviposition and that D. suzukii shows positive chemotaxis to low concentrations of the EOs and negative chemotaxis when the EO concentration increases. While no negative effects on the organoleptic profiles were detected for fruits treated with C. reticulata EO, the olfactory profile of fruits treated with M. alternifolia EO was so negative that they were defined as “not suitable for consumption” by panellists. Overall, our findings indicate that the use of EOs for the post-harvest protection of small fruits is feasible, provided that the essential oils are selected not only for their bioactivity against the insect pest but also for their affinity with the consumers’ sensorial system.
Collapse
Affiliation(s)
- Stefano Bedini
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Camilla Tani
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Erika Carla Pierattini
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
- Correspondence: (F.V.); (B.C.); Tel.: +39-050-221-6625 (F.V.); +39-050-221-6125 (B.C.)
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Claudio Ioriatti
- Technology Transfer Centre—Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy;
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.A.); (G.F.)
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.A.); (G.F.)
| | - Giuseppe Ferroni
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (S.B.); (F.C.); (C.T.); (E.C.P.); (A.L.); (G.F.); (I.T.)
- Correspondence: (F.V.); (B.C.); Tel.: +39-050-221-6625 (F.V.); +39-050-221-6125 (B.C.)
| |
Collapse
|
16
|
Corda G, Solari P, Dettori MA, Fabbri D, Delogu G, Crnjar R, Sollai G. Association between olfactory sensitivity and behavioral responses of Drosophila suzukii to naturally occurring volatile compounds. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21669. [PMID: 32190926 DOI: 10.1002/arch.21669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive, destructive crop pest that originated in South East Asia. D. suzukii recently invaded Western countries and is threatening both European and American fruit industries. It is extremely attracted to otherwise undamaged, ripening fruits, unlike most other Drosophila species that attack only decaying or rotten fruits. Recent studies on different insect species showed that several naturally occurring compounds of easy market availability showing deterrent action may be used to supplement mass catches with food traps. Based on these considerations, the aim of the present work was to test the effects of some natural compounds (alone or in the mixture) on the olfactory system of the D. suzukii and the behavioral responses evoked. We measured by electroantennogram (EAG) recordings, the olfactory sensitivity of antennae to increasing concentrations of eugenol, vanillin, menthol, cis-jasmone; eugenol + vanillin, +menthol, +cis-jasmone; vanillin + menthol, +cis-jasmone. In addition, the behavioral responses to the same compounds and mixtures were evaluated. Our electrophysiological results show a dose-response relationship between the EAG amplitudes and the increasing concentrations of the olfactory compound. The behavioral results show that the number of laid eggs is significantly different between the standard diet and the standard diet + natural compound. These results underline a specificity in the olfactory sensitivity and in the ovipositing behavior of D. suzukii females; also, they could be valuable for the identification of key chemicals aimed at the future development of strategies in the management and control of this harmful insect for crops.
Collapse
Affiliation(s)
- Giulia Corda
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cagliari, Italy
| | - Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cagliari, Italy
| | | | - Davide Fabbri
- National Research Council (CNR) Institute of Biomolecular Chemistry, Sassari, Italy
| | - Giovanna Delogu
- National Research Council (CNR) Institute of Biomolecular Chemistry, Sassari, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cagliari, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Gowton CM, Reut M, Carrillo J. Peppermint essential oil inhibits Drosophila suzukii emergence but reduces Pachycrepoideus vindemmiae parasitism rates. Sci Rep 2020; 10:9090. [PMID: 32499494 PMCID: PMC7272437 DOI: 10.1038/s41598-020-65189-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Spotted Wing Drosophila (Drosophila suzukii; Matsumura) is an invasive fruit fly with the ability to oviposit in a broad range of agriculturally valuable fruits. Volatile organic compounds (VOCs) produced by botanical oils may reduce D. suzukii’s attraction to hosts and decrease survival, but it is unknown whether their efficacy varies across D. suzukii life stages or affects the survival and success of higher trophic levels. Through a series of laboratory bioassays, we evaluated the effects of peppermint (Mentha arvensis L.) oil produced VOCs on D. suzukii survival and the survival of and parasitism rates by a pupal parasitoid wasp, Pachycrepoideus vindemmiae (Rondani). First, we determined whether fumigation with peppermint oil VOCs at the pupal stage reduced adult emergence, and whether this depended on environmental conditions (i.e. soil moisture). Second, we evaluated whether fumigation with peppermint oil VOCs reduced or enhanced parasitism by the pupal parasitoid and whether this depended on the timing of peppermint oil VOC exposure (i.e. before, during, or after parasitoid access). Fumigation with VOCs of 4.5 mg of peppermint oil reduced D. suzukii emergence under moist soil conditions but dry soil had a similar effect on reducing adult emergence as peppermint oil presence. Peppermint oil VOC fumigation was toxic to adult P. vindemmiae, but developing P. vindemmiae were unaffected by peppermint oil VOC fumigation. Using peppermint essential oil as a fumigant may reduce D. suzukii emergence from the pupal stage. However, this could negatively impact P. vindemmiae dependent on the timing of application.
Collapse
Affiliation(s)
- Chelsea Megan Gowton
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, The University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, V6T 1Z4, British Columbia, Canada.
| | - Michał Reut
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, The University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, V6T 1Z4, British Columbia, Canada.,Department of Applied Entomology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Juli Carrillo
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, The University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, V6T 1Z4, British Columbia, Canada
| |
Collapse
|
18
|
Rodríguez-González Á, Álvarez-García S, González-López Ó, Silva FD, Casquero PA. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean ( Phaseolus vulgaris, L.). INSECTS 2019; 10:E151. [PMID: 31130631 PMCID: PMC6572361 DOI: 10.3390/insects10050151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
Abstract
The bean weevil, Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), causes severe post-harvest losses in the common bean, Phaseolus vulgaris L. The control of this insect is still poor and involves the use of conventional insecticides. There is an increasing demand in the search for new active substances and products for pest control towards reduction of adverse effects on human health and the environment. The protection of grains with alternative products, such as essential oils, is a possible alternative to meet the needs described above. Therefore, this investigation evaluated the applications of basil, Ocimum basilicum, and citronella, Cymbopogon winterianus, essential oils for A. obtectus control. These essential oils significantly reduced the bean weight losses and the number of beans damaged by A. obtectus at higher doses than 60 or 120 μL/sample. The number of holes per bean did not differ between the doses of basil essential oil, not even at the dose of 60 μL, while it was higher at 120 μL, probably due to a lower capacity of movement of the insects treated with this dose and/or the oil's direct or indirect effects on the insects. Basil and citronella oils exhibited similar patterns of insecticidal activity over the insect, both directly in adult insects or indirectly over bean seeds. These essential oils affected the development of A. obtectus since the greatest doses applied on beans decreased the emergence of the bean weevil. The results prove the insecticidal capacity of the tested essential oils and hence their potential as active substances against A. obtectus in environmentally low risk pest control strategies. Supplementary trials should be conducted under real storage conditions.
Collapse
Affiliation(s)
- Álvaro Rodríguez-González
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, 24071 León, Spain.
| | - Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, 24071 León, Spain.
| | - Óscar González-López
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, 24071 León, Spain.
| | - Franceli Da Silva
- Universidad Federal de Reconcavo de Bahia, Rui Barbosa 710, CEP 44380-000 Cruz das Almas, Brazil.
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, 24071 León, Spain.
| |
Collapse
|
19
|
Cloonan KR, Abraham J, Angeli S, Syed Z, Rodriguez-Saona C. Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications. J Chem Ecol 2018; 44:922-939. [PMID: 30054769 DOI: 10.1007/s10886-018-1000-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
Abstract
Significant progress has been made in understanding the cues involved in the host and mate seeking behaviors of spotted wing drosophila, Drosophila suzukii (Matsumura). This insect pest has been discovered in many fruit growing regions around the world since 2008. Unlike closely related Drosophila species, D. suzukii attacks fresh fruit and has become a severe pest of soft fruits including strawberry, cherry, blackberry, blueberry, raspberry, and may pose a threat to grapes. Prior to 2008, little was known about the courtship and host-seeking behaviors or chemical ecology of this pest. Since then, researchers have gained a better understanding of D. suzukii attraction to specific odors from fermentation, yeast, fruit, and leaf sources, and the visual cues that elicit long-range attraction. Several compounds have also been identified that elicit aversive behaviors in adult D. suzukii flies. Progress has been made in identifying the constituent compounds from these odor sources that elicit D. suzukii antennal responses in electrophysiological assays. Commercial lures based on food volatiles have been developed to attract D. suzukii using these components and efforts have been made to improve trap designs for monitoring this pest under field conditions. However, current food-based lures and trap technologies are not expected to be specific to D. suzukii and thus capture large numbers of non-target drosophilids. Attractive and aversive compounds are being evaluated for monitoring, mass trapping, and for the development of attract-and-kill and push-pull techniques to manage D. suzukii populations. This review outlines presently available research on the chemical ecology of D. suzukii and discusses areas for future research.
Collapse
Affiliation(s)
- Kevin R Cloonan
- Department of Entomology, Rutgers University P.E. Marucci Center, 125A Lake Oswego Rd, Chatsworth, NJ, USA.
| | - John Abraham
- Department of Conservation Biology and Entomology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bozen-Bolzano, Italy
| | | | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University P.E. Marucci Center, 125A Lake Oswego Rd, Chatsworth, NJ, USA
| |
Collapse
|