1
|
Alkhulaifi FM, Alonaizan R, rady A, Alomar S. Study of gene polymorphisms in Toll-like receptor 2 in patients with acute lymphoblastic leukemia. Heliyon 2024; 10:e33754. [PMID: 39040297 PMCID: PMC11261853 DOI: 10.1016/j.heliyon.2024.e33754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.
Collapse
Affiliation(s)
- Fadwa M. Alkhulaifi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed rady
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Niknejad A, Hosseini Y, Shamsnia HS, Kashani AS, Rostamian F, Momtaz S, Abdolghaffari AH. Sodium Glucose Transporter-2 Inhibitors (SGLT2Is)-TLRs Axis Modulates Diabetes. Cell Biochem Biophys 2023; 81:599-613. [PMID: 37658280 DOI: 10.1007/s12013-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Abstract
Diabetes affects millions of people worldwide and is mainly associated with impaired insulin function. To date, various oral anti-diabetic drugs have been developed, of which, the sodium glucose transporter-2 inhibitors (SGLT2Is) are of the most recent classes that have been introduced. They differ from other classes in terms of their novel mechanism of actions and unique beneficial effects rather than just lowering glucose levels. SGLT2Is can protect body against cardiovascular events and kidney diseases even in non-diabetic individuals. SGLT2Is participate in immune cell activation, oxidative stress reduction, and inflammation mediation, thereby, moderating diabetic complications. In addition, toll like receptors (TLRs) are the intermediators of the immune system and inflammatory process, thus it's believed to play crucial roles in diabetic complications, particularly the ones that are related to inflammatory reactions. SGLT2Is are also effective against diabetic complications via their anti-inflammatory and oxidative properties. Given the anti-inflammatory properties of TLRs and SGLT2Is, this review investigates how SGLT2Is can affect the TLR pathway, and whether this could be favorable toward diabetes.
Collapse
Affiliation(s)
- Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
4
|
The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines 2022; 10:biomedicines10030549. [PMID: 35327350 PMCID: PMC8945420 DOI: 10.3390/biomedicines10030549] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to identify single nucleotide variants in genes associated with susceptibility to or severe outcomes of COVID-19. A total of 319 genomic DNA samples from patients with varying degrees of disease severity and 78 control DNA samples from people who had regular or prolonged contact with patients with COVID-19 but did not have clinical manifestations and/or antibodies to SARS-CoV-2. Seven SNPs were identified that were statistically associated with disease risk or severe course, rs1799864 in the CCR2 gene (OR = 2.21), rs1990760 in the IFIH1 gene (OR = 2.41), rs1800629 in the TNF gene (OR = 1.98), rs75603675 in the TMPRSS2 gene (OR = 1.86), rs7842 in the C3AR1 gene (OR = 2.08), rs179008 in the gene TLR7 (OR = 1.85), rs324011 in the C3AR1 gene (OR = 2.08), rs179008 in the TLR7 gene (OR = 1.85), and rs324011 in the STAT6 gene (OR = 1.84), as well as two variants associated with protection from COVID-19, rs744166 in the STAT3 gene (OR = 0.36) and rs1898830 in the TLR2 gene (OR = 0.47). The genotype in the region of these markers can be the criterion of the therapeutic approach for patients with COVID-19.
Collapse
|