1
|
Chandran RR, Vijayaraj P, Garcia-Milian R, King J, Castillo K, Chen L, Kwon Y, William S, Rickabaugh TM, Langerman J, Choi W, Sen C, Lever JEP, Li Q, Pavelkova N, Plosa EJ, Rowe SM, Plath K, Clair G, Gomperts BN. Loss of cell junctional components and matrix alterations drive cell desquamation and fibrotic changes in Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599411. [PMID: 38948715 PMCID: PMC11212876 DOI: 10.1101/2024.06.17.599411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.
Collapse
|
2
|
Sano H, Okoshi EN, Tachibana Y, Tanaka T, Lami K, Uegami W, Ohta Y, Brcic L, Bychkov A, Fukuoka J. Machine-Learning-Based Classification Model to Address Diagnostic Challenges in Transbronchial Lung Biopsy. Cancers (Basel) 2024; 16:731. [PMID: 38398122 PMCID: PMC10886691 DOI: 10.3390/cancers16040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND When obtaining specimens from pulmonary nodules in TBLB, distinguishing between benign samples and mis-sampling from a tumor presents a challenge. Our objective is to develop a machine-learning-based classifier for TBLB specimens. METHODS Three pathologists assessed six pathological findings, including interface bronchitis/bronchiolitis (IB/B), plasma cell infiltration (PLC), eosinophil infiltration (Eo), lymphoid aggregation (Ly), fibroelastosis (FE), and organizing pneumonia (OP), as potential histologic markers to distinguish between benign and malignant conditions. A total of 251 TBLB cases with defined benign and malignant outcomes based on clinical follow-up were collected and a gradient-boosted decision-tree-based machine learning model (XGBoost) was trained and tested on randomly split training and test sets. RESULTS Five pathological changes showed independent, mild-to-moderate associations (AUC ranging from 0.58 to 0.75) with benign conditions, with IB/B being the strongest predictor. On the other hand, FE emerged to be the sole indicator of malignant conditions with a mild association (AUC = 0.66). Our model was trained on 200 cases and tested on 51 cases, achieving an AUC of 0.78 for the binary classification of benign vs. malignant on the test set. CONCLUSION The machine-learning model developed has the potential to distinguish between benign and malignant conditions in TBLB samples excluding the presence or absence of tumor cells, thereby improving diagnostic accuracy and reducing the burden of repeated sampling procedures for patients.
Collapse
Affiliation(s)
- Hisao Sano
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Nagasaki, Japan; (H.S.); (E.N.O.); (Y.T.); (K.L.)
- Department of Diagnostic Pathology, Izumi City General Hospital, Izumi 594-0073, Osaka, Japan; (T.T.); (Y.O.)
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan; (W.U.); (A.B.)
| | - Ethan N. Okoshi
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Nagasaki, Japan; (H.S.); (E.N.O.); (Y.T.); (K.L.)
| | - Yuri Tachibana
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Nagasaki, Japan; (H.S.); (E.N.O.); (Y.T.); (K.L.)
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan; (W.U.); (A.B.)
| | - Tomonori Tanaka
- Department of Diagnostic Pathology, Izumi City General Hospital, Izumi 594-0073, Osaka, Japan; (T.T.); (Y.O.)
- Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Kris Lami
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Nagasaki, Japan; (H.S.); (E.N.O.); (Y.T.); (K.L.)
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan; (W.U.); (A.B.)
| | - Yoshio Ohta
- Department of Diagnostic Pathology, Izumi City General Hospital, Izumi 594-0073, Osaka, Japan; (T.T.); (Y.O.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan; (W.U.); (A.B.)
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Nagasaki, Japan; (H.S.); (E.N.O.); (Y.T.); (K.L.)
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan; (W.U.); (A.B.)
| |
Collapse
|
3
|
Vannan A, Lyu R, Williams AL, Negretti NM, Mee ED, Hirsh J, Hirsh S, Nichols DS, Calvi CL, Taylor CJ, Polosukhin VV, Serezani APM, McCall AS, Gokey JJ, Shim H, Ware LB, Bacchetta MJ, Shaver CM, Blackwell TS, Walia R, Sucre JMS, Kropski JA, McCarthy DJ, Banovich NE. Image-based spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571954. [PMID: 38168317 PMCID: PMC10760144 DOI: 10.1101/2023.12.15.571954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell-types, established the cellular and molecular basis of classical PF histopathologic disease features, and identified a diversity of distinct molecularly-defined spatial niches in control and PF lungs. Using machine-learning and trajectory analysis methods to segment and rank airspaces on a gradient from normal to most severely remodeled, we identified a sequence of compositional and molecular changes that associate with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially-resolved characterization of the cellular and molecular programs of PF and control lungs, provide new insights into the heterogeneous pathobiology of PF, and establish analytical approaches which should be broadly applicable to other imaging-based spatial transcriptomic studies.
Collapse
Affiliation(s)
- Annika Vannan
- Translational Genomics Research Institute, Phoenix, AZ
| | - Ruqian Lyu
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, AUS
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | | | - Nicholas M. Negretti
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan D. Mee
- Translational Genomics Research Institute, Phoenix, AZ
| | - Joseph Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S. Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase J. Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vasiliy. V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana PM Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A. Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heejung Shim
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew J. Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Medical Center, Nashville, TN
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Jennifer MS Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Medical Center, Nashville, TN
| | - Davis J McCarthy
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, AUS
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | | |
Collapse
|
4
|
Bonniaud P, Cottin V, Beltramo G. Pleuroparenchymal fibroelastosis: so many unmet needs. Eur Respir J 2022; 60:2201798. [PMID: 36549690 DOI: 10.1183/13993003.01798-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Philippe Bonniaud
- Constitutive Reference Center for Rare Pulmonary Diseases, OrphaLung, Department of Pulmonary Medicine and Intensive Care Unit, Dijon-Bourgogne Universitary Hospital, Inserm U1231, University of Bourgogne-Franche Comté, Dijon, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, Lyon, France
| | - Guillaume Beltramo
- Constitutive Reference Center for Rare Pulmonary Diseases, OrphaLung, Department of Pulmonary Medicine and Intensive Care Unit, Dijon-Bourgogne Universitary Hospital, Inserm U1231, University of Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
5
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|