1
|
Guo DY, Zhang Q, Wang L, Pu ZC, Jia P. Efficacy of prone positioning in awake ventilation for COVID-19: Umbrella review. Medicine (Baltimore) 2025; 104:e41477. [PMID: 39960924 PMCID: PMC11835137 DOI: 10.1097/md.0000000000041477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Awake-prone positioning was widely used in COVID-19, combined with high-flow nasal oxygen therapy or noninvasive ventilation, effectively reducing intubation, and the effect on mortality is controversial. We aim to reevaluate the efficacy of awake-prone positioning in COVID-19 and summarize the protocol for awake-prone positioning. METHODS We gathered data on the treatment of COVID-19 using awake-prone positioning from Web of Science, Cochrane Library, Embase, PubMed, and CNKI. All the included studies were published between 2019 and 2023. Two researchers used the Assessment of Multiple Systematic Reviews tool to assess the methodological quality of the literature. The evidence was assessed using the Grading of Recommendations Assessment and Evaluation system. RESULTS Thirteen articles were included. The quality assessment using AMSTAR2 revealed that 3 articles were high quality, and 4 were moderate quality. The evidence quality assessment of 41 primary outcomes by the Grading of Recommendations Assessment, Development and Evaluation indicates that 9 indicators were of moderate quality, 21 were of low quality, and 6 were of very low quality. CONCLUSIONS The review demonstrates high methodological quality, but the evidence quality of its outcome indicators is low. Awake-prone position has been shown to decrease intubation and improve oxygenation in COVID-19 patients. It is recommended to consult the latest quality assessment standards to develop more rigorous experimental protocols, improve research quality, and facilitate the translation of research findings.
Collapse
Affiliation(s)
- Dan-yang Guo
- University of Electronic Science and Technology, Chengdu, China
| | - Qin Zhang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Li Wang
- Department of NICU, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zai-chun Pu
- University of Electronic Science and Technology, Chengdu, China
| | - Ping Jia
- Department of NICU, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hiremath A, Viswanathan VS, Bera K, Shiradkar R, Yuan L, Armitage K, Gilkeson R, Ji M, Fu P, Gupta A, Lu C, Madabhushi A. Deep learning reveals lung shape differences on baseline chest CT between mild and severe COVID-19: A multi-site retrospective study. Comput Biol Med 2024; 177:108643. [PMID: 38815485 PMCID: PMC11188049 DOI: 10.1016/j.compbiomed.2024.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Severe COVID-19 can lead to extensive lung disease causing lung architectural distortion. In this study we employed machine learning and statistical atlas-based approaches to explore possible changes in lung shape among COVID-19 patients and evaluated whether the extent of these changes was associated with COVID-19 severity. On a large multi-institutional dataset (N = 3443), three different populations were defined; a) healthy (no COVID-19), b) mild COVID-19 (no ventilator required), c) severe COVID-19 (ventilator required), and the presence of lung shape differences between them were explored using baseline chest CT. Significant lung shape differences were observed along mediastinal surfaces of the lungs across all severity of COVID-19 disease. Additionally, differences were seen on basal surfaces of the lung when compared between healthy and severe COVID-19 patients. Finally, an AI model (a 3D residual convolutional network) characterizing these shape differences coupled with lung infiltrates (ground-glass opacities and consolidation regions) was found to be associated with COVID-19 severity.
Collapse
Affiliation(s)
- Amogh Hiremath
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA; Picture Health, Cleveland, OH, USA
| | | | - Kaustav Bera
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | | | - Lei Yuan
- Renmin Hospital of Wuhan University, Department of Information Center, Wuhan, Hubei, China
| | - Keith Armitage
- University Hospitals Cleveland Medical Center, Department of Infectious Diseases, Cleveland, OH, USA
| | - Robert Gilkeson
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Mengyao Ji
- Renmin Hospital of Wuhan University, Department of Gastroenterology, Wuhan, Hubei, China
| | - Pingfu Fu
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland, OH, USA
| | - Amit Gupta
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Cheng Lu
- Guangdong Provincial People's Hospital, Department of Radiology, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong Provincial People's Hospital, Medical Research Center, Guangdong Academy of Medical Sciences, China
| | - Anant Madabhushi
- Georgia Institute of Technology and Emory University, Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, GA, USA; Atlanta Veterans Administration Medical Center, GA, USA.
| |
Collapse
|
3
|
Jung C, Gillmann HJ, Stueber T. Modification of Respiratory Drive and Lung Stress by Level of Support Pressure and ECMO Sweep Gas Flow in Patients With Severe COVID-19-Associated Acute Respiratory Distress Syndrome: an Exploratory Retrospective Analysis. J Cardiothorac Vasc Anesth 2024; 38:221-229. [PMID: 38197786 DOI: 10.1053/j.jvca.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES Patients with severe acute respiratory distress syndrome (ARDS) often exhibit an unusually strong respiratory drive, which predisposes them to effort-induced lung injury. Careful titration of support pressure via the ventilator and carbon dioxide removal via extracorporeal membrane oxygenation (ECMO) may attenuate respiratory drive and lung stress. DESIGN A retrospective cohort study. SETTING At a single center, a university hospital. PARTICIPANTS Ten patients with severe COVID-19-associated ARDS (CARDS) on venovenous ECMO therapy. INTERVENTIONS Assessment of the effect of titrated support pressure and titrated ECMO sweep gas flow on respiratory drive and lung stress in spontaneously breathing patients during ECMO therapy. MEASUREMENTS AND MAIN RESULTS Airway occlusion pressure (P0.1) and the total swing of the transpulmonary pressure were determined as surrogate parameters of respiratory drive and lung stress. Ventilator-mediated elevation of support pressure decreased P0.1 but increased transpulmonary driving pressure, airway pressure, tidal volume, and end-inspiratory transpulmonary occlusion pressure. The increase in ECMO sweep gas flow lowered P0.1, transpulmonary pressures, tidal volume, and respiratory frequency linearly. CONCLUSIONS In patients with CARDS on pressure support ventilation, even moderate support pressure may lead to overassistance during assisted ventilation, which is only reflected by advanced monitoring of respiratory mechanics. Modifying carbon dioxide removal via the extracorporeal system profoundly affects respiratory effort and mechanics. Spontaneously breathing patients with CARDS may benefit from consequent carbon dioxide removal.
Collapse
Affiliation(s)
- Carolin Jung
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| | - Hans-Jörg Gillmann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Islam MA, Getz M, Macklin P, Ford Versypt AN. An agent-based modeling approach for lung fibrosis in response to COVID-19. PLoS Comput Biol 2023; 19:e1011741. [PMID: 38127835 PMCID: PMC10769079 DOI: 10.1371/journal.pcbi.1011741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
5
|
Artaud-Macari E, Le Bouar G, Maris J, Dantoing E, Vatignez T, Girault C. [Ventilatory management of SARS-CoV-2 acute respiratory failure]. Rev Mal Respir 2023; 40:751-767. [PMID: 37865564 DOI: 10.1016/j.rmr.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
COVID-19 pneumonia presents several particularities in its clinical presentation (cytokine storm, silent hypoxemia, thrombo-embolic risk) and may lead to a number of acute respiratory distress syndrome (ARDS) phenotypes. While the optimal oxygenation strategy in cases of hypoxemic acute respiratory failure (ARF) is still under debate, ventilatory management of COVID-19-related ARF has confirmed the efficacy of high-flow oxygen therapy and restored interest in other ventilatory approaches such as continuous positive airway pressure (CPAP) and noninvasive ventilation involving a helmet, which due to patient overflow are sometimes implemented outside of critical care units. However, further studies are still needed to determine which patients should be given which oxygenation technique, and under which conditions they require invasive mechanical ventilation, given that delayed initiation potentially burdens prognosis. During invasive mechanical ventilation, ventral decubitus and extracorporeal membrane oxygenation have become increasingly prevalent. While innovative therapies such as awake prone position or lung transplantation have likewise been developed, their indications, modalities and efficacy remain to be determined.
Collapse
Affiliation(s)
- E Artaud-Macari
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France; UNIROUEN, UR-3830, Normandie université, CHU de Rouen, 76000 Rouen, France.
| | - G Le Bouar
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - J Maris
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - E Dantoing
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - T Vatignez
- Service de médecine intensive et réanimation, CHU de Rouen, 76000 Rouen, France
| | - C Girault
- UNIROUEN, UR-3830, Normandie université, CHU de Rouen, 76000 Rouen, France; Service de médecine intensive et réanimation, CHU de Rouen, 76000 Rouen, France
| |
Collapse
|
6
|
Islam MA, Getz M, Macklin P, Versypt ANF. An agent-based modeling approach for lung fibrosis in response to COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.10.03.510677. [PMID: 36238719 PMCID: PMC9558432 DOI: 10.1101/2022.10.03.510677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis. Author summary COVID-19 survivors are at risk of lung fibrosis as a long-term effect. Lung fibrosis is the excess deposition of tissue materials in the lung that hinder gas exchange and can collapse the whole organ. We identified TGF-β as a critical regulator of fibrosis. We built a model to investigate the mechanisms of TGF-β sources in the process of fibrosis. Our results showed spatial behavior of sources (stationary or mobile) and their activity (activation rate of TGF-β, longer activation of sources) could lead to lung fibrosis. Current clinical trials for fibrosis that target TGF-β need to consider TGF-β sources' spatial properties and activity to develop better treatment strategies.
Collapse
|
7
|
Rodrigues de Moraes L, Robba C, Battaglini D, Pelosi P, Rocco PRM, Silva PL. New and personalized ventilatory strategies in patients with COVID-19. Front Med (Lausanne) 2023; 10:1194773. [PMID: 37332761 PMCID: PMC10273276 DOI: 10.3389/fmed.2023.1194773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus and may lead to severe respiratory failure and the need for mechanical ventilation (MV). At hospital admission, patients can present with severe hypoxemia and dyspnea requiring increasingly aggressive MV strategies according to the clinical severity: noninvasive respiratory support (NRS), MV, and the use of rescue strategies such as extracorporeal membrane oxygenation (ECMO). Among NRS strategies, new tools have been adopted for critically ill patients, with advantages and disadvantages that need to be further elucidated. Advances in the field of lung imaging have allowed better understanding of the disease, not only the pathophysiology of COVID-19 but also the consequences of ventilatory strategies. In cases of refractory hypoxemia, the use of ECMO has been advocated and knowledge on handling and how to personalize strategies have increased during the pandemic. The aims of the present review are to: (1) discuss the evidence on different devices and strategies under NRS; (2) discuss new and personalized management under MV based on the pathophysiology of COVID-19; and (3) contextualize the use of rescue strategies such as ECMO in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Lucas Rodrigues de Moraes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Denise Battaglini
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Paolo Pelosi
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Bianchi IM, Zacchetti L, Punzi V, Raimondi F, Novelli L, Brivio M, Grazioli LS, Mojoli F, Marco FD, Lorini LF. Combined Effect of Awake Prone Position and Noninvasive Ventilation on Respiratory Effort and Gas Exchange in Severe COVID-19-Related Pneumonia. Respir Care 2023; 68:524-526. [PMID: 36810362 PMCID: PMC10173122 DOI: 10.4187/respcare.10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Isabella M Bianchi
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy; and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Lucia Zacchetti
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy.
| | - Veronica Punzi
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy; and Department of Health Sciences, University of Milan, Milano, Italy
| | - Federico Raimondi
- Department of Health Sciences, University of Milan, Milano, Italy; and Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Luca Novelli
- Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Matteo Brivio
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy
| | - Lorenzo S Grazioli
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy
| | - Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Fabiano Di Marco
- Department of Health Sciences, University of Milan, Milano, Italy; and Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Luca F Lorini
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy; and School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
9
|
Sklienka P, Frelich M, Burša F. Patient Self-Inflicted Lung Injury-A Narrative Review of Pathophysiology, Early Recognition, and Management Options. J Pers Med 2023; 13:593. [PMID: 37108979 PMCID: PMC10146629 DOI: 10.3390/jpm13040593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Patient self-inflicted lung injury (P-SILI) is a life-threatening condition arising from excessive respiratory effort and work of breathing in patients with lung injury. The pathophysiology of P-SILI involves factors related to the underlying lung pathology and vigorous respiratory effort. P-SILI might develop both during spontaneous breathing and mechanical ventilation with preserved spontaneous respiratory activity. In spontaneously breathing patients, clinical signs of increased work of breathing and scales developed for early detection of potentially harmful effort might help clinicians prevent unnecessary intubation, while, on the contrary, identifying patients who would benefit from early intubation. In mechanically ventilated patients, several simple non-invasive methods for assessing the inspiratory effort exerted by the respiratory muscles were correlated with respiratory muscle pressure. In patients with signs of injurious respiratory effort, therapy aimed to minimize this problem has been demonstrated to prevent aggravation of lung injury and, therefore, improve the outcome of such patients. In this narrative review, we accumulated the current information on pathophysiology and early detection of vigorous respiratory effort. In addition, we proposed a simple algorithm for prevention and treatment of P-SILI that is easily applicable in clinical practice.
Collapse
Affiliation(s)
- Peter Sklienka
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Department of Intensive Care Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| | - Michal Frelich
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| | - Filip Burša
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Department of Intensive Care Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| |
Collapse
|
10
|
Zubieta-Calleja GR, Zubieta-DeUrioste N, de Jesús Montelongo F, Sanchez MGR, Campoverdi AF, Rocco PRM, Battaglini D, Ball L, Pelosi P. Morphological and functional findings in COVID-19 lung disease as compared to Pneumonia, ARDS, and High-Altitude Pulmonary Edema. Respir Physiol Neurobiol 2023; 309:104000. [PMID: 36460252 PMCID: PMC9707029 DOI: 10.1016/j.resp.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Coronavirus disease-2019 (COVID-19) may severely affect respiratory function and evolve to life-threatening hypoxia. The clinical experience led to the implementation of standardized protocols assuming similarity to severe acute respiratory syndrome (SARS-CoV-2). Understanding the histopathological and functional patterns is essential to better understand the pathophysiology of COVID-19 and then develop new therapeutic strategies. Epithelial and endothelial cell damage can result from the virus attack, thus leading to immune-mediated response. Pulmonary histopathological findings show the presence of Mallory bodies, alveolar coating cells with nuclear atypia, reactive pneumocytes, reparative fibrosis, intra-alveolar hemorrhage, moderate inflammatory infiltrates, micro-abscesses, microthrombus, hyaline membrane fragments, and emphysema-like lung areas. COVID-19 patients may present different respiratory stages from silent to critical hypoxemia, are associated with the degree of pulmonary parenchymal involvement, thus yielding alteration of ventilation and perfusion relationships. This review aims to: discuss the morphological (histopathological and radiological) and functional findings of COVID-19 compared to acute interstitial pneumonia, acute respiratory distress syndrome (ARDS), and high-altitude pulmonary edema (HAPE), four entities that share common clinical traits, but have peculiar pathophysiological features with potential implications to their clinical management.
Collapse
Affiliation(s)
| | | | - Felipe de Jesús Montelongo
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | - Manuel Gabriel Romo Sanchez
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | | | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Corresponding author
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Lee JH, Koh J, Jeon YK, Goo JM, Yoon SH. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023; 306:e222600. [PMID: 36648343 PMCID: PMC9868683 DOI: 10.1148/radiol.222600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
This article reviews the radiologic and pathologic findings of the epithelial and endothelial injuries in COVID-19 pneumonia to help radiologists understand the fundamental nature of the disease. The radiologic and pathologic manifestations of COVID-19 pneumonia result from epithelial and endothelial injuries based on viral toxicity and immunopathologic effects. The pathologic features of mild and reversible COVID-19 pneumonia involve nonspecific pneumonia or an organizing pneumonia pattern, while the pathologic features of potentially fatal and irreversible COVID-19 pneumonia are characterized by diffuse alveolar damage followed by fibrosis or acute fibrinous organizing pneumonia. These pathologic responses of epithelial injuries observed in COVID-19 pneumonia are not specific to SARS-CoV-2 but rather constitute universal responses to viral pneumonia. Endothelial injury in COVID-19 pneumonia is a prominent feature compared with other types of viral pneumonia and encompasses various vascular abnormalities at different levels, including pulmonary thromboembolism, vascular engorgement, peripheral vascular reduction, a vascular tree-in-bud pattern, and lung perfusion abnormality. Chest CT with different imaging techniques (eg, CT quantification, dual-energy CT perfusion) can fully capture the various manifestations of epithelial and endothelial injuries. CT can thus aid in establishing prognosis and identifying patients at risk for deterioration.
Collapse
Affiliation(s)
- Jong Hyuk Lee
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jaemoon Koh
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Yoon Kyung Jeon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jin Mo Goo
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Soon Ho Yoon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| |
Collapse
|
12
|
Battaglini D, Cruz F, Robba C, Pelosi P, Rocco PRM. Failed clinical trials on COVID-19 acute respiratory distress syndrome in hospitalized patients: common oversights and streamlining the development of clinically effective therapeutics. Expert Opin Investig Drugs 2022; 31:995-1015. [PMID: 36047644 DOI: 10.1080/13543784.2022.2120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic has put a strain on global healthcare systems. Despite admirable efforts to develop rapidly new pharmacotherapies, supportive treatments remain the standard of care. Multiple clinical trials have failed due to design issues, biased patient enrollment, small sample sizes, inadequate control groups, and lack of long-term outcomes monitoring. AREAS COVERED This narrative review depicts the current situation around failed and success COVID-19 clinical trials and recommendations in hospitalized patients with COVID-19, oversights and streamlining of clinically effective therapeutics. PubMed, EBSCO, Cochrane Library, and WHO and NIH guidelines were searched for relevant literature up to 5 August 2022. EXPERT OPINION The WHO, NIH, and IDSA have issued recommendations to better clarify which drugs should be used during the different phases of the disease. Given the biases and high heterogeneity of published studies, interpretation of the current literature is difficult. Future clinical trials should be designed to standardize clinical approaches, with appropriate organization, patient selection, addition of control groups, and careful identification of disease phase to reduce heterogeneity and bias and should rely on the integration of scientific societies to promote a consensus on interpretation of the data and recommendations for optimal COVID-19 therapies.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Fernanda Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Policlinico San Martino, IRCCS per l'Oncologia e Neuroscienze, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy.,Policlinico San Martino, IRCCS per l'Oncologia e Neuroscienze, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Fazzini B, Battaglini D, Carenzo L, Pelosi P, Cecconi M, Puthucheary Z. Physical and psychological impairment in survivors with acute respiratory distress syndrome: a systematic review and meta-analysis. Br J Anaesth 2022; 129:801-814. [DOI: 10.1016/j.bja.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
|
14
|
Ball L, Robba C, Herrmann J, Gerard SE, Xin Y, Pigati M, Berardino A, Iannuzzi F, Battaglini D, Brunetti I, Minetti G, Seitun S, Vena A, Giacobbe DR, Bassetti M, Rocco PRM, Cereda M, Castellan L, Patroniti N, Pelosi P. Early versus late intubation in COVID-19 patients failing helmet CPAP: A quantitative computed tomography study. Respir Physiol Neurobiol 2022; 301:103889. [PMID: 35307564 PMCID: PMC8928743 DOI: 10.1016/j.resp.2022.103889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE To describe the effects of timing of intubation in COVID-19 patients that fail helmet continuous positive airway pressure (h-CPAP) on progression and severity of disease. METHODS COVID-19 patients that failed h-CPAP, required intubation, and underwent chest computed tomography (CT) at two levels of positive end-expiratory pressure (PEEP, 8 and 16 cmH2O) were included in this retrospective study. Patients were divided in two groups (early versus late) based on the duration of h-CPAP before intubation. Endpoints included percentage of non-aerated lung tissue at PEEP of 8 cmH2O, respiratory system compliance and oxygenation. RESULTS Fifty-two patients were included and classified in early (h-CPAP for ≤2 days, N = 26) and late groups (h-CPAP for >2 days, N = 26). Patients in the late compared to early intubation group presented: 1) lower respiratory system compliance (median difference, MD -7 mL/cmH2O, p = 0.044) and PaO2/FiO2 (MD -29 mmHg, p = 0.047), 2) higher percentage of non-aerated lung tissue (MD 7.2%, p = 0.023) and 3) similar lung recruitment increasing PEEP from 8 to 16 cmH2O (MD 0.1%, p = 0.964). CONCLUSIONS In COVID-19 patients receiving h-CPAP, late intubation was associated with worse clinical presentation at ICU admission and more advanced disease. The possible detrimental effects of delaying intubation should be carefully considered in these patients.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy.
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sarah E Gerard
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Yi Xin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Pigati
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Francesca Iannuzzi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Giuseppe Minetti
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Sara Seitun
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lucio Castellan
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|
15
|
Battaglini D, Lopes-Pacheco M, Castro-Faria-Neto HC, Pelosi P, Rocco PRM. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front Immunol 2022; 13:857573. [PMID: 35572561 PMCID: PMC9091347 DOI: 10.3389/fimmu.2022.857573] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causes a wide spectrum of clinical manifestations, with progression to multiorgan failure in the most severe cases. Several biomarkers can be altered in coronavirus disease 2019 (COVID-19), and they can be associated with diagnosis, prognosis, and outcomes. The most used biomarkers in COVID-19 include several proinflammatory cytokines, neuron-specific enolase (NSE), lactate dehydrogenase (LDH), aspartate transaminase (AST), neutrophil count, neutrophils-to-lymphocytes ratio, troponins, creatine kinase (MB), myoglobin, D-dimer, brain natriuretic peptide (BNP), and its N-terminal pro-hormone (NT-proBNP). Some of these biomarkers can be readily used to predict disease severity, hospitalization, intensive care unit (ICU) admission, and mortality, while others, such as metabolomic and proteomic analysis, have not yet translated to clinical practice. This narrative review aims to identify laboratory biomarkers that have shown significant diagnostic and prognostic value for risk stratification in COVID-19 and discuss the possible clinical application of novel analytic strategies, like metabolomics and proteomics. Future research should focus on identifying a limited but essential number of laboratory biomarkers to easily predict prognosis and outcome in severe COVID-19.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,COVID-19 Virus Network from Brazilian Council for Scientific and Technological Development, Brasília, Brazil.,COVID-19 Virus Network from Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Schroeder I, Irlbeck M, Zoller M. [Noninvasive respiratory support and invasive ventilation in COVID‑19 : Where do we stand today?]. Anaesthesist 2022; 71:333-339. [PMID: 35397669 PMCID: PMC8994638 DOI: 10.1007/s00101-022-01114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2022] [Indexed: 12/23/2022]
Abstract
The controversy surrounding ventilation in coronavirus disease 2019 (COVID-19) continues. Early in the pandemic it was postulated that the high intensive care unit (ICU) mortality may have been due to too early intubation. As the pandemic progressed recommendations changed and the use of noninvasive respiratory support (NIRS) increased; however, this did not result in a clear reduction in ICU mortality. Furthermore, large studies on optimal ventilation in COVID-19 are lacking. This review article summarizes the pathophysiological basis, the current state of the science and the impact of different treatment modalities on the outcome. Potential factors that could undermine the benefits of noninvasive respiratory support are discussed. The authors attempt to provide guidance in answering the difficult question of when is the right time to intubate?
Collapse
Affiliation(s)
- Ines Schroeder
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland.
| | - Michael Irlbeck
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland
| | - Michael Zoller
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland
| |
Collapse
|
17
|
Tonelli R, Bruzzi G, Manicardi L, Tabbì L, Fantini R, Castaniere I, Andrisani D, Gozzi F, Pellegrino MR, Trentacosti F, Dall’Ara L, Busani S, Franceschini E, Baroncini S, Manco G, Meschiari M, Mussini C, Girardis M, Beghè B, Marchioni A, Clini E. Risk Factors for Pulmonary Air Leak and Clinical Prognosis in Patients With COVID-19 Related Acute Respiratory Failure: A Retrospective Matched Control Study. Front Med (Lausanne) 2022; 9:848639. [PMID: 35433732 PMCID: PMC9008271 DOI: 10.3389/fmed.2022.848639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background The role of excessive inspiratory effort in promoting alveolar and pleural rupture resulting in air leak (AL) in patients with SARS-CoV-2 induced acute respiratory failure (ARF) while on spontaneous breathing is undetermined. Methods Among all patients with COVID-19 related ARF admitted to a respiratory intensive care unit (RICU) and receiving non-invasive respiratory support, those developing an AL were and matched 1:1 [by means of PaO2/FiO2 ratio, age, body mass index-BMI and subsequent organ failure assessment (SOFA)] with a comparable population who did not (NAL group). Esophageal pressure (ΔPes) and dynamic transpulmonary pressure (ΔPL) swings were compared between groups. Risk factors affecting AL onset were evaluated. The composite outcome of ventilator-free-days (VFD) at day 28 (including ETI, mortality, tracheostomy) was compared between groups. Results Air leak and NAL groups (n = 28) showed similar ΔPes, whereas AL had higher ΔPL (20 [16–21] and 17 [11–20], p = 0.01, respectively). Higher ΔPL (OR = 1.5 95%CI[1–1.8], p = 0.01), positive end-expiratory pressure (OR = 2.4 95%CI[1.2–5.9], p = 0.04) and pressure support (OR = 1.8 95%CI[1.1–3.5], p = 0.03), D-dimer on admission (OR = 2.1 95%CI[1.3–9.8], p = 0.03), and features suggestive of consolidation on computed tomography scan (OR = 3.8 95%CI[1.1–15], p = 0.04) were all significantly associated with AL. A lower VFD score resulted in a higher risk (HR = 3.7 95%CI [1.2–11.3], p = 0.01) in the AL group compared with NAL. RICU stay and 90-day mortality were also higher in the AL group compared with NAL. Conclusion In spontaneously breathing patients with COVID-19 related ARF, higher levels of ΔPL, blood D-dimer, NIV delivery pressures and a consolidative lung pattern were associated with AL onset.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria Pellegrino
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Fabiana Trentacosti
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Lorenzo Dall’Ara
- Intensive Care Unit, University Hospital of Modena, Modena, Italy
| | - Stefano Busani
- Intensive Care Unit, University Hospital of Modena, Modena, Italy
| | | | - Serena Baroncini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Gianrocco Manco
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Cristina Mussini
- Infectious Diseases Unit, University Hospital of Modena, Modena, Italy
| | - Massimo Girardis
- Intensive Care Unit, University Hospital of Modena, Modena, Italy
| | - Bianca Beghè
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- *Correspondence: Alessandro Marchioni,
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Tonelli R, Cortegiani A, Marchioni A, Fantini R, Tabbì L, Castaniere I, Biagioni E, Busani S, Nani C, Cerbone C, Vermi M, Gozzi F, Bruzzi G, Manicardi L, Pellegrino MR, Beghè B, Girardis M, Pelosi P, Gregoretti C, Ball L, Clini E. Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure. Crit Care 2022; 26:70. [PMID: 35331323 PMCID: PMC8943795 DOI: 10.1186/s13054-022-03938-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background Excessive inspiratory effort could translate into self-inflicted lung injury, thus worsening clinical outcomes of spontaneously breathing patients with acute respiratory failure (ARF). Although esophageal manometry is a reliable method to estimate the magnitude of inspiratory effort, procedural issues significantly limit its use in daily clinical practice. The aim of this study is to describe the correlation between esophageal pressure swings (ΔPes) and nasal (ΔPnos) as a potential measure of inspiratory effort in spontaneously breathing patients with de novo ARF. Methods From January 1, 2021, to September 1, 2021, 61 consecutive patients with ARF (83.6% related to COVID-19) admitted to the Respiratory Intensive Care Unit (RICU) of the University Hospital of Modena (Italy) and candidate to escalation of non-invasive respiratory support (NRS) were enrolled. Clinical features and tidal changes in esophageal and nasal pressure were recorded on admission and 24 h after starting NRS. Correlation between ΔPes and ΔPnos served as primary outcome. The effect of ΔPnos measurements on respiratory rate and ΔPes was also assessed. Results ΔPes and ΔPnos were strongly correlated at admission (R2 = 0.88, p < 0.001) and 24 h apart (R2 = 0.94, p < 0.001). The nasal plug insertion and the mouth closure required for ΔPnos measurement did not result in significant change of respiratory rate and ΔPes. The correlation between measures at 24 h remained significant even after splitting the study population according to the type of NRS (high-flow nasal cannulas [R2 = 0.79, p < 0.001] or non-invasive ventilation [R2 = 0.95, p < 0.001]). Conclusions In a cohort of patients with ARF, nasal pressure swings did not alter respiratory mechanics in the short term and were highly correlated with esophageal pressure swings during spontaneous tidal breathing. ΔPnos might warrant further investigation as a measure of inspiratory effort in patients with ARF. Trial registration: NCT03826797. Registered October 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03938-w.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (DiChirOnS), University of Palermo, Palermo, Italy.,Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Emanuela Biagioni
- Intensive Care Unit, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Stefano Busani
- Intensive Care Unit, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Chiara Nani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Caterina Cerbone
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Morgana Vermi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Maria Rosaria Pellegrino
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Bianca Beghè
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Intensive Care Unit, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Anesthesia and Critical Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Cesare Gregoretti
- Department of Surgical, Oncological and Oral Science (DiChirOnS), University of Palermo, Palermo, Italy.,Fondazione G. Giglio, Cefalù, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Anesthesia and Critical Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Kharat A, Ribeiro C, Er B, Fisser C, López-Padilla D, Chatzivasiloglou F, Heunks LMA, Patout M, D'Cruz RF. ERS International Congress, Virtual 2021: Highlights from the Respiratory Intensive Care Assembly Early Career Members. ERJ Open Res 2022; 8:00016-2022. [PMID: 35615411 PMCID: PMC9124870 DOI: 10.1183/23120541.00016-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
Early Career Members of Assembly 2 (Respiratory Intensive Care) attended the European Respiratory Society International Congress through a virtual platform in 2021. Sessions of interest to our assembly members included symposia on the implications of acute respiratory distress syndrome phenotyping on diagnosis and treatment, safe applications of noninvasive ventilation in hypoxaemic respiratory failure, and new developments in mechanical ventilation and weaning, and a guidelines session on applying high-flow therapy in acute respiratory failure. These sessions are summarised in this article. Early Career Members of @ERSAssembly2 attended the #ERSCongress 2021, and reported on symposia on ARDS phenotyping, noninvasive ventilation in hypoxic respiratory failure, ventilator weaning and high-flow therapy in acute respiratory failurehttps://bit.ly/3D68r50
Collapse
|
20
|
Monitoring respiratory mechanics by oscillometry in COVID-19 patients receiving non-invasive respiratory support. PLoS One 2022; 17:e0265202. [PMID: 35312682 PMCID: PMC8936489 DOI: 10.1371/journal.pone.0265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Background Non-invasive ventilation (NIV) has been increasingly used in COVID-19 patients. The limited physiological monitoring and the unavailability of respiratory mechanic measures, usually obtainable during invasive ventilation, is a limitation of NIV for ARDS and COVID-19 patients management. Objectives This pilot study was aimed to evaluate the feasibility of non-invasively monitoring respiratory mechanics by oscillometry in COVID-19 patients with moderate-severe acute respiratory distress syndrome (ARDS) receiving NIV. Method 15 COVID-19 patients affected by moderate-severe ARDS at the RICU (Respiratory Intensive Care Unit) of the University hospital of Cattinara, Trieste, Italy were recruited. Patients underwent oscillometry tests during short periods of spontaneous breathing between NIV sessions. Results Oscillometry proved to be feasible, reproducible and well-tolerated by patients. At admission, 8 of the 15 patients showed oscillometry parameters within the normal range which further slightly improved before discharge. At discharge, four patients had still abnormal respiratory mechanics, not exclusively linked to pre-existing respiratory comorbidities. Lung mechanics parameters were not correlated with oxygenation. Conclusions Our results suggest that lung mechanics provide complementary information for improving patients phenotyping and personalisation of treatments during NIV in COVID 19 patients, especially in the presence of respiratory comorbidities where deterioration of lung mechanics may be less coupled with changes in oxygenation and more difficult to identify. Oscillometry may provide a valuable tool for monitoring lung mechanics in COVID 19 patients receiving NIV.
Collapse
|
21
|
Pelosi P, Tonelli R, Torregiani C, Baratella E, Confalonieri M, Battaglini D, Marchioni A, Confalonieri P, Clini E, Salton F, Ruaro B. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J Clin Med 2022; 11:1704. [PMID: 35330029 PMCID: PMC8952765 DOI: 10.3390/jcm11061704] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The latest guidelines for the hospital care of patients affected by coronavirus disease 2019 (COVID-19)-related acute respiratory failure have moved towards the widely accepted use of noninvasive respiratory support (NIRS) as opposed to early intubation at the pandemic onset. The establishment of severe COVID-19 pneumonia goes through different pathophysiological phases that partially resemble typical acute respiratory distress syndrome (ARDS) and have been categorized into different clinical-radiological phenotypes. These can variably benefit on the application of external positive end-expiratory pressure (PEEP) during noninvasive mechanical ventilation, mainly due to variable levels of lung recruitment ability and lung compliance during different phases of the disease. A growing body of evidence suggests that intense respiratory effort producing excessive negative pleural pressure swings (Ppl) plays a critical role in the onset and progression of lung and diaphragm damage in patients treated with noninvasive respiratory support. Routine respiratory monitoring is mandatory to avoid the nasty continuation of NIRS in patients who are at higher risk for respiratory deterioration and could benefit from early initiation of invasive mechanical ventilation instead. Here we propose different monitoring methods both in the clinical and experimental settings adapted for this purpose, although further research is required to allow their extensive application in clinical practice. We reviewed the needs and available tools for clinical-physiological monitoring that aims at optimizing the ventilatory management of patients affected by acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Chiara Torregiani
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy;
| | - Marco Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Denise Battaglini
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Paola Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Enrico Clini
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Francesco Salton
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Barbara Ruaro
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| |
Collapse
|
22
|
Fazzini B, Page A, Pearse R, Puthucheary Z. Prone positioning for non-intubated spontaneously breathing patients with acute hypoxaemic respiratory failure: a systematic review and meta-analysis. Br J Anaesth 2022; 128:352-362. [PMID: 34774295 PMCID: PMC8514681 DOI: 10.1016/j.bja.2021.09.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Prone positioning in non-intubated spontaneously breathing patients is becoming widely applied in practice alongside noninvasive respiratory support. This systematic review and meta-analysis evaluates the effect, timing, and populations that might benefit from awake proning regarding oxygenation, mortality, and tracheal intubation compared with supine position in hypoxaemic acute respiratory failure. METHODS We conducted a systematic literature search of PubMed/MEDLINE, Cochrane Library, Embase, CINAHL, and BMJ Best Practice until August 2021 (International Prospective Register of Systematic Reviews [PROSPERO] registration: CRD42021250322). Studies included comprise least-wise 20 adult patients with hypoxaemic respiratory failure secondary to acute respiratory distress syndrome or coronavirus disease (COVID-19). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and study quality was assessed using the Newcastle-Ottawa Scale and the Cochrane risk-of-bias tool. RESULTS Fourteen studies fulfilled the selection criteria and 2352 patients were included; of those patients, 99% (n=2332/2352) had COVID-19. Amongst 1041 (44%) patients who were placed in the prone position, 1021 were SARS-CoV-2 positive. The meta-analysis revealed significant improvement in the PaO2/FiO2 ratio (mean difference -23.10; 95% confidence interval [CI]: -34.80 to 11.39; P=0.0001; I2=26%) after prone positioning. In patients with COVID-19, lower mortality was found in the group placed in the prone position (150/771 prone vs 391/1457 supine; odds ratio [OR] 0.51; 95% CI: 0.32-0.80; P=0.003; I2=48%), but the tracheal intubation rate was unchanged (284/824 prone vs 616/1271 supine; OR 0.72; 95% CI: 0.43-1.22; P=0.220; I2=75%). Overall proning was tolerated for a median of 4 h (inter-quartile range: 2-16). CONCLUSIONS Prone positioning can improve oxygenation amongst non-intubated patients with acute hypoxaemic respiratory failure when applied for at least 4 h over repeated daily episodes. Awake proning appears safe, but the effect on tracheal intubation rate and survival remains uncertain.
Collapse
Affiliation(s)
- Brigitta Fazzini
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK.
| | - Alexandria Page
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Rupert Pearse
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Zudin Puthucheary
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Orlandi D, Battaglini D, Robba C, Viganò M, Bergamaschi G, Mignatti T, Radice ML, Lapolla A, Turtulici G, Pelosi P. Coronavirus Disease 2019 Phenotypes, Lung Ultrasound, Chest Computed Tomography and Clinical Features in Critically Ill Mechanically Ventilated Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3323-3332. [PMID: 34551862 PMCID: PMC8302846 DOI: 10.1016/j.ultrasmedbio.2021.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 05/12/2023]
Abstract
Chest computed tomography (CT) may provide insights into the pathophysiology of coronavirus disease 2019 (COVID-19), although it is not suitable for a timely bedside dynamic assessment of patients admitted to intensive care unit (ICU); therefore, lung ultrasound (LUS) has been proposed as a complementary diagnostic tool. The aims of this study were to investigate different lungs phenotypes in patients with COVID-19 and to assess the differences in CT and LUS scores between ICU survivors and non-survivors. We also explored the association between CT and LUS, and oxygenation (arterial partial pressure of oxygen [PaO2]/fraction of inspired oxygen [FiO2]) and clinical parameters. The study included 39 patients with COVID-19. CT scans revealed types 1, 2 and 3 phenotypes in 62%, 28% and 10% of patients, respectively. Among survivors, pattern 1 was prevalent (p < 0.005). Chest CT and LUS scores differed between survivors and non-survivors both at ICU admission and 10 days after and were associated with ICU mortality. Chest CT score was positively correlated with LUS findings at ICU admission (r = 0.953, p < 0.0001) and was inversely correlated with PaO2/FiO2 (r = -0.375, p = 0.019) and C-reactive protein (r = 0.329, p = 0.041). LUS score was inversely correlated with PaO2/FiO2 (r = -0.345, p = 0.031). COVID-19 presents distinct phenotypes with differences between survivors and non-survivors. LUS is a valuable monitoring tool in an ICU setting because it may correlate with CT findings and mortality, although it cannot predict oxygenation changes.
Collapse
Affiliation(s)
- Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| | - Marco Viganò
- Orthopedics Biotechnology Laboratory, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giulio Bergamaschi
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Tiziana Mignatti
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Maria Luisa Radice
- Anesthesia and Intensive Care, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Antonio Lapolla
- Anesthesia and Intensive Care, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Giovanni Turtulici
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
24
|
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most common severe diseases seen in the clinical setting. With the continuous exploration of ARDS in recent decades, the understanding of ARDS has improved. ARDS is not a simple lung disease but a clinical syndrome with various etiologies and pathophysiological changes. However, in the intensive care unit, ARDS often occurs a few days after primary lung injury or after a few days of treatment for other severe extrapulmonary diseases. Under such conditions, ARDS often progresses rapidly to severe ARDS and is difficult to treat. The occurrence and development of ARDS in these circumstances are thus not related to primary lung injury; the real cause of ARDS may be the “second hit” caused by inappropriate treatment. In view of the limited effective treatments for ARDS, the strategic focus has shifted to identifying potential or high-risk ARDS patients during the early stages of the disease and implementing treatment strategies aimed at reducing ARDS and related organ failure. Future research should focus on the prevention of ARDS.
Collapse
|
25
|
Extension of Collagen Deposition in COVID-19 Post Mortem Lung Samples and Computed Tomography Analysis Findings. Int J Mol Sci 2021; 22:ijms22147498. [PMID: 34299124 PMCID: PMC8305333 DOI: 10.3390/ijms22147498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Lung fibrosis has specific computed tomography (CT) findings and represents a common finding in advanced COVID-19 pneumonia whose reversibility has been poorly investigated. The aim of this study was to quantify the extension of collagen deposition and aeration in postmortem cryobiopsies of critically ill COVID-19 patients and to describe the correlations with qualitative and quantitative analyses of lung CT. Postmortem transbronchial cryobiopsy samples were obtained, formalin fixed, paraffin embedded and stained with Sirius red to quantify collagen deposition, defining fibrotic samples as those with collagen deposition above 10%. Lung CT images were analyzed qualitatively with a radiographic score and quantitatively with computer-based analysis at the lobe level. Thirty samples from 10 patients with COVID-19 pneumonia deceased during invasive mechanical ventilation were included in this study. The median [interquartile range] percent collagen extension was 6.8% (4.6-16.2%). In fibrotic compared to nonfibrotic samples, the qualitative score was higher (260 (250-290) vs. 190 (120-270), p = 0.036) while the gas fraction was lower (0.46 (0.32-0.47) vs. 0.59 (0.37-0.68), p = 0.047). A radiographic score above 230 had 100% sensitivity (95% confidence interval, CI: 66.4% to 100%) and 66.7% specificity (95% CI: 41.0% to 92.3%) to detect fibrotic samples, while a gas fraction below 0.57 had 100% sensitivity (95% CI: 66.4% to 100%) and 57.1% specificity (95% CI: 26.3% to 88.0%). In COVID-19 pneumonia, qualitative and quantitative analyses of lung CT images have high sensitivity but moderate to low specificity to detect histopathological fibrosis. Pseudofibrotic CT findings do not always correspond to increased collagen deposition.
Collapse
|
26
|
Weaver L, Das A, Saffaran S, Yehya N, Scott TE, Chikhani M, Laffey JG, Hardman JG, Camporota L, Bates DG. High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Ann Intensive Care 2021; 11:109. [PMID: 34255207 PMCID: PMC8276227 DOI: 10.1186/s13613-021-00904-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is on-going controversy regarding the potential for increased respiratory effort to generate patient self-inflicted lung injury (P-SILI) in spontaneously breathing patients with COVID-19 acute hypoxaemic respiratory failure. However, direct clinical evidence linking increased inspiratory effort to lung injury is scarce. We adapted a computational simulator of cardiopulmonary pathophysiology to quantify the mechanical forces that could lead to P-SILI at different levels of respiratory effort. In accordance with recent data, the simulator parameters were manually adjusted to generate a population of 10 patients that recapitulate clinical features exhibited by certain COVID-19 patients, i.e., severe hypoxaemia combined with relatively well-preserved lung mechanics, being treated with supplemental oxygen. RESULTS Simulations were conducted at tidal volumes (VT) and respiratory rates (RR) of 7 ml/kg and 14 breaths/min (representing normal respiratory effort) and at VT/RR of 7/20, 7/30, 10/14, 10/20 and 10/30 ml/kg / breaths/min. While oxygenation improved with higher respiratory efforts, significant increases in multiple indicators of the potential for lung injury were observed at all higher VT/RR combinations tested. Pleural pressure swing increased from 12.0 ± 0.3 cmH2O at baseline to 33.8 ± 0.4 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 46.2 ± 0.5 cmH2O at 10 ml/kg/30 breaths/min. Transpulmonary pressure swing increased from 4.7 ± 0.1 cmH2O at baseline to 17.9 ± 0.3 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 24.2 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. Total lung strain increased from 0.29 ± 0.006 at baseline to 0.65 ± 0.016 at 10 ml/kg/30 breaths/min. Mechanical power increased from 1.6 ± 0.1 J/min at baseline to 12.9 ± 0.2 J/min at VT/RR of 7 ml/kg/30 breaths/min, and to 24.9 ± 0.3 J/min at 10 ml/kg/30 breaths/min. Driving pressure increased from 7.7 ± 0.2 cmH2O at baseline to 19.6 ± 0.2 cmH2O at VT/RR of 7 ml/kg/30 breaths/min, and to 26.9 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. CONCLUSIONS Our results suggest that the forces generated by increased inspiratory effort commonly seen in COVID-19 acute hypoxaemic respiratory failure are comparable with those that have been associated with ventilator-induced lung injury during mechanical ventilation. Respiratory efforts in these patients should be carefully monitored and controlled to minimise the risk of lung injury.
Collapse
Affiliation(s)
- Liam Weaver
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Anup Das
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Sina Saffaran
- Faculty of Engineering Science, University College London, London, WC1E 6BT, UK
| | - Nadir Yehya
- Department of Anaesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy E Scott
- Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, ICT Centre, Birmingham, B15 2SQ, UK
| | - Marc Chikhani
- Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Galway, Ireland
| | - Jonathan G Hardman
- Anaesthesia & Critical Care, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Luigi Camporota
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
27
|
Tonelli R, Busani S, Tabbì L, Fantini R, Castaniere I, Biagioni E, Mussini C, Girardis M, Clini E, Marchioni A. Inspiratory Effort and Lung Mechanics in Spontaneously Breathing Patients with Acute Respiratory Failure Due to COVID-19: A Matched Control Study. Am J Respir Crit Care Med 2021; 204:725-728. [PMID: 34214009 PMCID: PMC8521698 DOI: 10.1164/rccm.202104-1029le] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Roberto Tonelli
- University of Modena and Reggio Emilia, 9306, PhD program Clinical and Experimental Medicine, Modena, Italy
| | - Stefano Busani
- Policlinico di Modena, 551871, Anesthesia and Intensive Care, Modena, Italy
| | - Luca Tabbì
- University Hospital Modena, 208968, Respiratory Diseases Unit, Modena, Italy
| | - Riccardo Fantini
- University Hospital Modena, 208968, Respiratory Diseases Unit, Modena, Italy
| | - Ivana Castaniere
- University Hospital Modena, 208968, Respiratory Diseases Unit, Modena, Italy.,University of Modena and Reggio Emilia, 9306, PhD Course in Clinical and Experimental Medicine, Modena, Italy
| | - Emanuela Biagioni
- Azienda Ospedaliera Universitaria Policlinico di Modena, 208968, Modena, Italy
| | - Cristina Mussini
- University Hospital Modena, 208968, Infectious Diseases Unit, Modena, Italy
| | - Massimo Girardis
- University of Modena and Reggio Emilia, 9306, Surgical, Medical and Dental Department of Morphological Sciences related to Transplants Oncology and Regenerative Medicine, Modena, Italy
| | - Enrico Clini
- University of Modena and Reggio Emilia, 9306, Medical and Surgical Sciences, Modena, Italy.,University Hospital Modena, 208968, Malattie Apparato Respiratorio, Modena, Italy;
| | | |
Collapse
|