1
|
Drakes N, Kondrikova G, Pytel D, Hamlett ED. Unveiling the Intricate Link Between Anaerobe Niche and Alzheimer Disease Pathogenesis. J Infect Dis 2024; 230:S117-S127. [PMID: 39255391 DOI: 10.1093/infdis/jiae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.
Collapse
Affiliation(s)
- NyEmma Drakes
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Biology, College of Charleston
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| |
Collapse
|
2
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
3
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
4
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
5
|
Aldecoa I, Barroeta I, Carroll SL, Fortea J, Gilmore A, Ginsberg SD, Guzman SJ, Hamlett ED, Head E, Perez SE, Potter H, Molina‐Porcel L, Raha‐Chowdhury R, Wisniewski T, Yong WH, Zaman S, Ghosh S, Mufson EJ, Granholm A. Down Syndrome Biobank Consortium: A perspective. Alzheimers Dement 2024; 20:2262-2272. [PMID: 38270275 PMCID: PMC10984425 DOI: 10.1002/alz.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024]
Abstract
Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.
Collapse
Affiliation(s)
- Iban Aldecoa
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Neurological Tissue Bank of the BiobankHospital Clinic de Barcelona‐FCRB/IDIBAPSBarcelonaSpain
| | - Isabel Barroeta
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Steven L. Carroll
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Juan Fortea
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Anah Gilmore
- University of Colorado Denver Anschutz Medical Campus, NeurosurgeryAuroraColoradoUSA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Samuel J. Guzman
- Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Eric D. Hamlett
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Sylvia E. Perez
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | - Huntington Potter
- University of Colorado Denver Anschutz Medical Campus, NeurologyAuroraColoradoUSA
| | - Laura Molina‐Porcel
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Alzheimer's Disease and Other Cognitive Disorders UnitNeurology Service, Hospital Clínic, IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Ruma Raha‐Chowdhury
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - William H. Yong
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Shahid Zaman
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Sujay Ghosh
- Department of ZoologyCytogenetics and Genomics Research UnitKolkataIndia
| | - Elliott J. Mufson
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | | |
Collapse
|
6
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Colvett I, Saternos H, Coughlan C, Vielle A, Ledreux A. Extracellular vesicles from the CNS play pivotal roles in neuroprotection and neurodegeneration: lessons from in vitro experiments. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:72-89. [PMID: 37859665 PMCID: PMC10586524 DOI: 10.20517/evcna.2023.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Intercellular communication between diverse cell types is crucial for the maintenance of the central nervous system, and exosomes have been shown to play an important role in this process. Exosomes are small extracellular vesicles (EVs) that are released by all cell types and carry cargoes that can elicit downstream effects in recipient cells. Exosomal communication in the central nervous system has been implicated in many neurodegenerative diseases, ranging from Alzheimer's disease to major depressive disorder. Though there remain many unknowns in the field of EV biology, in vitro experiments can provide many insights into their potential roles in health and disease. In this review, we discuss the findings of many in vitro EV experiments, with a focus on the potential roles in regulating cell viability, inflammation, oxidative stress, and neurite integrity in the central nervous system.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Christina Coughlan
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Anne Vielle
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| |
Collapse
|
8
|
Jin N, Gu J, Wu R, Chu D, Tung YC, Wegiel J, Wisniewski T, Gong CX, Iqbal K, Liu F. Tau seeding activity in various regions of down syndrome brain assessed by two novel assays. Acta Neuropathol Commun 2022; 10:132. [PMID: 36064460 PMCID: PMC9446852 DOI: 10.1186/s40478-022-01436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Propagation of tau pathology via the seeding of naive tau aggregation underlies the progression of Alzheimer's disease (AD) and related tauopathies. Individuals with Down syndrome (DS) develop tau pathology at the fourth decade of life, but tau seeding activity in DS brain has not yet been determined. To measure tau seeding activity, we developed capture assay and seeded-tau aggregation assay with truncated tau151-391. By using brain extracts from AD and related tauopathies, we validated these two methods and found that the brain extracts from AD and related tauopathies, but not from controls and the diseases in which tau was not hyperphosphorylated, captured in vitro and seeded 3R-tau151-391 and 4R-tau151-391 to aggregate in cultured cells similarly. Captured tau151-391 levels were strongly correlated with the seeded-tau151-391 aggregation. Employing these two newly developed assays, we analyzed tau seeding activity in the temporal (TC), frontal (FC), and occipital cortex (OC); corpus callosum (CC); and cerebellar cortex (CBC) of DS and control brains. We found that the extracts of TC, FC, or OC, but not the CC or CBC of DS or the corresponding brain regions of control cases, captured tau151-391. Levels of the captured tau151-391 by brain extracts were positively correlated with their levels of phosphorylated tau. Extracts of cerebral cortex and CC, but not CBC of DS with a similar tau level, induced more tau151-391 aggregation than did the corresponding samples from the control cases. Thus, higher tau seeding activity associated with tau hyperphosphorylation was found in the TC, FC, and OC of DS compared with the corresponding control regions as well as with the CBC and CC of DS. Of note, these two assays are sensitive, specific, and repeatable at a low cost and provide a platform for measuring tau seeding activity and for drug screening that targets tau propagation.
Collapse
Affiliation(s)
- Nana Jin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianlan Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, 226001, China
| | - Ruozhen Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, 226001, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology, and Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA.
| |
Collapse
|
9
|
Zhou C, Bei J, Qiu Y, Chang Q, Nyong E, Vasilakis N, Yang J, Krishnan B, Khanipov K, Jin Y, Fang X, Gaitas A, Gong B. Exosomally Targeting microRNA23a Ameliorates Microvascular Endothelial Barrier Dysfunction Following Rickettsial Infection. Front Immunol 2022; 13:904679. [PMID: 35812423 PMCID: PMC9260018 DOI: 10.3389/fimmu.2022.904679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Spotted fever group rickettsioses caused by Rickettsia (R) are devastating human infections, which mainly target microvascular endothelial cells (ECs) and can induce lethal EC barrier dysfunction in the brain and lungs. Our previous evidence reveals that exosomes (Exos) derived from rickettsial-infected ECs, namely R-ECExos, can induce disruption of the tight junctional (TJ) protein ZO-1 and barrier dysfunction of human normal recipient brain microvascular endothelial cells (BMECs). However, the underlying mechanism remains elusive. Given that we have observed that microRNA23a (miR23a), a negative regulator of endothelial ZO-1 mRNA, is selectively sorted into R-ECExos, the aim of the present study was to characterize the potential functional role of exosomal miR23a delivered by R-ECExos in normal recipient BMECs. We demonstrated that EC-derived Exos (ECExos) have the capacity to deliver oligonucleotide RNAs to normal recipient BMECs in an RNase-abundant environment. miR23a in ECExos impairs normal recipient BMEC barrier function, directly targeting TJ protein ZO-1 mRNAs. In separate studies using a traditional in vitro model and a novel single living-cell biomechanical assay, our group demonstrated that miR23a anti-sense oligonucleotide-enriched ECExos ameliorate R-ECExo-provoked recipient BMEC dysfunction in association with stabilization of ZO-1 in a dose-dependent manner. These results suggest that Exo-based therapy could potentially prove to be a promising strategy to improve vascular barrier function during bacterial infection and concomitant inflammation.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Emmanuel Nyong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX, United States
- Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, United States
- The Center of Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jun Yang
- Department of Internal Medicine, Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Xiang Fang
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, United States
- The Center of Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
11
|
Impact of endolysosomal dysfunction upon exosomes in neurodegenerative diseases. Neurobiol Dis 2022; 166:105651. [DOI: 10.1016/j.nbd.2022.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
|
12
|
Martini AC, Alldred MJ, Granholm AC. Aging in Down Syndrome: Latest Clinical Advances and Prospects. J Clin Med 2021; 10:5037. [PMID: 34768560 PMCID: PMC8584622 DOI: 10.3390/jcm10215037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is the most common genetic cause of intellectual disability [...].
Collapse
Affiliation(s)
- Alessandra C. Martini
- Department of Pathology and Lab. Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Melissa J. Alldred
- Nathan Kline Institute, NYU Grossman Medical School, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
- Department of Neurosurgery, CU Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|