1
|
Chissico Júnior F, Santos da Silva T, Vieira Meirelles F, Monzani PS, Fornari Laurindo L, Maria Barbalho S, Miglino MA. A Review on Bioengineering the Bovine Mammary Gland: The Role of the Extracellular Matrix and Reconstruction Prospects. Bioengineering (Basel) 2025; 12:501. [PMID: 40428120 PMCID: PMC12108683 DOI: 10.3390/bioengineering12050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The mammary gland is a modified sweat gland responsible for milk production. It is affected by diseases that reduce animals' quality of life, consequently leading to economic losses in livestock. With advancements in tissue bioengineering and regenerative medicine, studying the extracellular matrix (ECM) of the bovine mammary gland can improve our understanding of its physiology and the processes that affect it. This knowledge could also enable the development of sustainable therapeutic alternatives for both the dairy production chain and human oncology research. A common approach in regenerative medicine is decellularization, a process that removes all cells from tissue while preserving its architecture and ECM components for subsequent recellularization. The success of recellularization depends on obtaining immunologically compatible scaffolds and using appropriate cell culture sources and methods to ensure tissue functionality. However, tissue culture technology still faces challenges due to specific requirements and high costs. Here, we review the literature on biomaterials and tissue engineering, providing an overview of the ECM of the bovine mammary gland and advances in its bioengineering, with a focus on regenerative medicine for bovine species. The methodology employed consists of a structured search of scientific databases, including PubMed, Google Scholar, and SciELO, using specific keywords related to tissue engineering and the bovine mammary gland. The selection criteria prioritized peer-reviewed articles published between 2002 and 2025 that demonstrated scientific relevance and contributed to the understanding of bovine mammary gland bioengineering. Although research on this topic has advanced, vascularization, tissue maturation, and scalability remain key barriers to widespread application and economic viability.
Collapse
Affiliation(s)
- Fernando Chissico Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, Universidade de São Paulo (USP), São Paulo 05508-270, SP, Brazil; (F.C.J.); (T.S.d.S.)
- Department of Veterinary Medicine and Animal Science, School of Veterinary Medicine and Animal Science, Universidade Save (UniSave), Chongoene 1200, Mozambique
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, Universidade de São Paulo (USP), São Paulo 05508-270, SP, Brazil; (F.C.J.); (T.S.d.S.)
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo (USP), Pirassununga Campus, Pirassununga 13635-900, SP, Brazil;
| | - Paulo Sérgio Monzani
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, Universidade de São Paulo (USP), Pirassununga Campus, Pirassununga 13635-900, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil or (L.F.L.); (S.M.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil or (L.F.L.); (S.M.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Maria Angélica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Animal Health, Production and Environment, School of Veterinary Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Animal Anatomy, School of Veterinary Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
2
|
Jin A, Lu C, Gao C, Qiao H, Zhang Y, Liu H, Sun W, Dai Q, Liu Y. Biomimetic basement membranes: advances in materials, preparation techniques, and applications in in vitro biological models. Biomater Sci 2025; 13:2179-2200. [PMID: 40100740 DOI: 10.1039/d4bm01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In vitro biological model technology has become a cornerstone of modern biological research, driving advancements in drug screening, physiological and pathological studies, and tissue implantation applications. The natural basement membrane (BM), a homogeneous structure, provides critical physical and biological support for tissues and organs. To replicate its function, researchers have developed biomimetic BMs using advanced fabrication technologies, which are increasingly applied to in vitro models. This review explores the materials, preparation techniques, and applications of biomimetic BMs across various biological models, highlighting their advantages and limitations. Additionally, it discusses recent progress in the field and identifies current challenges in achieving BM simulations that closely mimic native structures. Future directions and recommendations are provided to guide the development of high-performance biomimetic BM materials and their manufacturing processes.
Collapse
Affiliation(s)
- Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
3
|
Bernatoniene J, Plieskis M, Petrikonis K. Pharmaceutical 3D Printing Technology Integrating Nanomaterials and Nanodevices for Precision Neurological Therapies. Pharmaceutics 2025; 17:352. [PMID: 40143015 PMCID: PMC11945809 DOI: 10.3390/pharmaceutics17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Pharmaceutical 3D printing, combined with nanomaterials and nanodevices, presents a transformative approach to precision medicine for treating neurological diseases. This technology enables the creation of tailored dosage forms with controlled release profiles, enhancing drug delivery across the blood-brain barrier (BBB). The integration of nanoparticles, such as poly lactic-co-glycolic acid (PLGA), chitosan, and metallic nanomaterials, into 3D-printed scaffolds improves treatment efficacy by providing targeted and prolonged drug release. Recent advances have demonstrated the potential of these systems in treating conditions like Parkinson's disease, epilepsy, and brain tumors. Moreover, 3D printing allows for multi-drug combinations and personalized formulations that adapt to individual patient needs. Novel drug delivery approaches, including stimuli-responsive systems, on-demand dosing, and theragnostics, provide new possibilities for the real-time monitoring and treatment of neurological disorders. Despite these innovations, challenges remain in terms of scalability, regulatory approval, and long-term safety. The future perspectives of this technology suggest its potential to revolutionize neurological treatments by offering patient-specific therapies, improved drug penetration, and enhanced treatment outcomes. This review discusses the current state, applications, and transformative potential of 3D printing and nanotechnology in neurological treatment, highlighting the need for further research to overcome the existing challenges.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | | | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių str. 2, LT-50009 Kaunas, Lithuania;
| |
Collapse
|
4
|
Briones Y, Pascua B, Tiangco N, Crisostomo I, Casiguran S, Remenyi R. Assessing the landscape of clinical and observational trials involving bioprinting: a scoping review. 3D Print Med 2025; 11:5. [PMID: 39961914 PMCID: PMC11834296 DOI: 10.1186/s41205-025-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Bioprinting is a tissue engineering technique that is rapidly evolving to include complex clinical applications. However, there is limited evidence describing how far bioprinting has progressed past the pre-clinical stage. Thus, we conducted a scoping review to assess the landscape of clinical studies, including interventional and observational trials, involving bioprinting by charting trends in general characteristics, bioprinting application, and trial design. METHODS The term "bioprint" and its variants were searched in five trial databases (ICTRP, ScanMedicine, CENTRAL, NIHCC, HCCTD) and two registries (ClinicalTrials.gov, PHRR) on 22 February 2024. This was followed by duplicate removal and dual independent review to finalize the inclusion list. We included trials published in or translated to English mentioning "bioprint" in their design, while we excluded those that did not adhere to our definition of bioprinting. Finally, data were charted and synthesized narratively. RESULTS Of 36 total search records, 11 trials met the inclusion criteria. Registration dates ranged from 2016 to 2023, with China conducting the most trials globally. Four trials had published results, while the remaining were still in progress. Four interventional trials aimed to implant bioprinted tissues made with autologous cells, including blood vessels, trachea, external ear, and wound dressings. The other seven studies were interventional and observational trials aiming to bioprint autologous cell-laden in vitro models to study conditions such as cancer. CONCLUSION Bioprinting is still in the early stages of clinical research, with a focus on producing patient-specific tissues for cancer precision medicine and regenerative purposes. More standardized reporting of bioprinting-related information is needed to improve research transparency and replicability. As the body of evidence grows, our review may be used as a framework to monitor the clinical translation of bioprinting over the years.
Collapse
Affiliation(s)
- Yumi Briones
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, 550 First Avenue, New York, 10016, New York, United States of America.
| | - Beatrice Pascua
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center Inc., 64 Aurora Boulevard, Quezon City, 1113, Metro Manila, Philippines
| | - Narra Tiangco
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Ecology and Biodiversity, Institute for Marine and Antarctic Sciences, 20 Castray Esplanade, Battery Point, 7004, Tasmania, Australia
| | - Isabel Crisostomo
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Samantha Casiguran
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
| |
Collapse
|
5
|
de Almeida HV, Bomediano MP, Catori DM, Silva EHC, de Oliveira MG. Integrating 3D printing of biomaterials with nitric oxide release. Biomater Sci 2025; 13:858-874. [PMID: 39804041 DOI: 10.1039/d4bm01304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications. Although 3D printing techniques allow for the creation of polymeric constructs with versatile designs and high geometric precision, integrating NO-releasing functional groups or molecules into these constructs poses several challenges. NO donors, such as S-nitrosothiols (RSNOs) or diazeniumdiolates (NONOates), may release NO thermally, complicating their incorporation into resins that require heating for extrusion-based 3D printing. Conversely, NO released photochemically from RSNOs effectively inhibits radical propagation, thus hindering photoinduced 3D printing processes. This review outlines the primary strategies employed to overcome these challenges in developing NO-releasing biomaterials via 3D printing, and explores future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Herllan V de Almeida
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil.
| | - Mateus P Bomediano
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil.
| | - Daniele M Catori
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, USA
| | - Elizaura H C Silva
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil.
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil.
| |
Collapse
|
6
|
Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. J Mater Chem B 2025; 13:1890-1919. [PMID: 39775500 DOI: 10.1039/d4tb01060d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers. For a bio-ink to be considered high-performance, it must meet several critical criteria: printability, gelation kinetics, structural integrity, elasticity and strength, cell adhesion and differentiation, mimicking the native ECM, cell viability and proliferation. As an exemplar application, tissue grafting is used to repair and replace severely injured tissues. The primary considerations in this case include compatibility, availability, advanced surgical techniques, and potential complications after the operation. 3D printing has emerged as an advancement in 3D culture for its use as a regenerative medicine approach. Thus, additive technologies such as 3D bioprinting may offer safe, compatible, and fast-healing tissue engineering options. Multiple methods have been developed for hard and soft tissue engineering during the past few decades, however there are many limitations. Despite significant advances in 3D cell culture, 3D printing, and material creation, a gold standard strategy for designing and rebuilding bone, cartilage, skin, and other tissues has not yet been achieved. Owing to its abundance in the human body and its critical role in protecting and supporting human tissues, soft and hard collagen-based bioinks is an attractive proposition for 3D bioprinting. Collagen, offers a good combination of biocompatibility, controllability, and cell loading. Collagen made of triple helical collagen subunit is a protein-based organic polymer present in almost every extracellular matrix of tissues. Collagen-based bioinks, which create bioinspired scaffolds with multiple functionalities and uses them in various applications, is a represent a breakthrough in the regenerative medicine and biomedical engineering fields. This protein can be blended with a variety of polymers and inorganic fillers to improve the physical and biological performance of the scaffolds. To date, there has not been a comprehensive review appraising the existing literature surround the use of collagen-based bioink applications in 'soft' or 'hard' tissue applications. The uses of the target region in soft tissues include the skin, nerve, and cartilage, whereas in the hard tissues, it specifically refers to bone. For soft tissue healing, collagen-based bioinks must meet greater functional criteria, whereas hard tissue restoration requires superior mechanical qualities. Herein, we summarise collagen-based bioink's features and highlight the most essential ones for diverse healing situations. We conclude with the primary challenges and difficulties of using collagen-based bioinks and suggest future research objectives.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
| |
Collapse
|
7
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Varpe A, Sayed M, Mane NS. A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone. Ann Biomed Eng 2025; 53:14-33. [PMID: 38977527 DOI: 10.1007/s10439-024-03580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.
Collapse
Affiliation(s)
- Aishwarya Varpe
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Marwana Sayed
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Nikhil S Mane
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India.
| |
Collapse
|
9
|
Lammi MJ, Qu C. Spatial Transcriptomics, Proteomics, and Epigenomics as Tools in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel) 2024; 11:1235. [PMID: 39768053 PMCID: PMC11673258 DOI: 10.3390/bioengineering11121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Spatial transcriptomics, proteomics, and epigenomics are innovative technologies which offer an unparalleled resolution and wealth of data in understanding and the interpretation of cellular functions and interactions. These techniques allow researchers to investigate gene and protein expressions at an individual cell level, revealing cellular heterogeneity within, for instance, bioengineered tissues and classifying novel and rare cell populations that could be essential for the function of the tissues and in disease processes. It is possible to analyze thousands of cells simultaneously, which gives thorough insights into the transcriptomic view of complex tissues. Spatial transcriptomics combines gene expressions with spatial information, conserving tissue architecture and making the mapping of gene activity across different tissue regions possible. Despite recent advancements in these technologies, they face certain limitations. Single-cell transcriptomics can suffer from technical noise and dropout events, leading to incomplete data. Its applicability has been limited by the complexity of data integration and interpretation, although better resolution and tools for the interpretation of data are developing fast. Spatial proteomics and spatial epigenomics provide data on the distribution of proteins and the gene regulatory aspects in tissues, respectively. The disadvantages of these approaches include rather costly and time-consuming analyses. Nevertheless, combining these techniques promises a more comprehensive understanding of cell function and tissue organization, which can be predicted to be useful in achieving better knowledge of cell guidance in tissue-engineered constructs and a higher quality of tissue technology products.
Collapse
Affiliation(s)
- Mikko J. Lammi
- Institute of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
10
|
Li F, XinHuang, Wang R, Li Y, Wu L, Qiao X, Zhong Y, Gong G, Huang W. Collagen-based materials in male genitourinary diseases and tissue regeneration. COLLAGEN AND LEATHER 2024; 6:36. [DOI: 10.1186/s42825-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
AbstractMale genitourinary dysfunction causes serious physical or mental distress, such as infertility and psychological harm, which leads to impaired quality of life. Current conventional treatments involving drug therapy, surgical repair, and tissue grafting have a limited effect on recovering the function and fertility of the genitourinary organs. To address these limitations, various biomaterials have been explored, with collagen-based materials increasingly gaining attention for reconstructing the male genitourinary system due to their superior biocompatibility, biodegradability, low antigenicity, biomimetic 3D matrix characteristics, hemostatic efficacy, and tissue regeneration capabilities. This review covers the recent biomedical applications of collagen-based materials including treatment of erectile dysfunction, premature ejaculation, penile girth enlargement, prostate cancer, Peyronie's disease, chronic kidney disease, etc. Although there are relatively few clinical trials, the promising results of the existing studies on animal models reveal a bright future for collagen-based materials in the treatment of male genitourinary diseases.
Graphic Abstract
Collapse
|
11
|
Yang T, Jin Y, Smith LM, Dahotre NB, Neogi A. Real-time in-situ ultrasound monitoring of soft hydrogel 3D printing with subwavelength resolution. COMMUNICATIONS ENGINEERING 2024; 3:162. [PMID: 39521874 PMCID: PMC11550851 DOI: 10.1038/s44172-024-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
3D bioprinting has excellent potential in tissue engineering, regenerative medicine, and drug delivery systems due to the ability to fabricate intricate structures that are challenging to make with conventional manufacturing methods. However, the complexity of parametric combinations and lack of product quality control have restricted soft hydrogel bioprinting from practical applications. Here we show an in-situ ultrasound monitoring system that reveals the alginate-gelatin hydrogel's additive manufacturing process. We use this technique to understand the parameters that influenced transient printing behaviors and material properties in approximately real-time. This unique monitoring process can facilitate the detection of minor errors/flaws during the printing. By analyzing the ultrasonic reflected signals in both time and frequency domains, transient printing information can be obtained from 3D printed soft hydrogels during the processes with a depth subwavelength resolution approaching 0.78 λ . This in-situ technique monitors the printing behaviors regarding the constructed film, interlayer bonding, transient effective elastic constant, layer-wise surface roughness (elastic or plastic), nozzle indentation/scratching, and gravitational spreading. The simulation-verified experimental methods monitored fully infilled printing and gridded pattern printing conditions. Furthermore, the proposed ultrasound system also experimentally monitored the post-crosslinking process of alginate-gelatin hydrogel in CaCl2 solution. The results can optimize crosslinking time by balancing the hydrogel's stiffness enhancement and geometrical distortion.
Collapse
Affiliation(s)
- Teng Yang
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
- Department of Physics, University of North Texas, Denton, TX, USA
| | - Yuqi Jin
- Department of Physics, University of North Texas, Denton, TX, USA.
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA.
| | - Lee Miller Smith
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA
| | - Narendra B Dahotre
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
12
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
13
|
Carvalho LN, Peres LC, Alonso-Goulart V, Santos BJD, Braga MFA, Campos FDAR, Palis GDAP, Quirino LS, Guimarães LD, Lafetá SA, Simbara MMO, Castro-Filice LDS. Recent advances in the 3D skin bioprinting for regenerative medicine: Cells, biomaterials, and methods. J Biomater Appl 2024; 39:421-438. [PMID: 39196759 DOI: 10.1177/08853282241276799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Collapse
Affiliation(s)
- Loyna Nobile Carvalho
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Lucas Correia Peres
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mário Fernando Alves Braga
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Gabriela de Aquino Pinto Palis
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ludmilla Sousa Quirino
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Laura Duarte Guimarães
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Sofia Alencar Lafetá
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
14
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
15
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
16
|
Kim DY, Liu Y, Kim G, An SB, Han I. Innovative Strategies in 3D Bioprinting for Spinal Cord Injury Repair. Int J Mol Sci 2024; 25:9592. [PMID: 39273538 PMCID: PMC11395085 DOI: 10.3390/ijms25179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions for SCI repair by enabling the creation of complex neural tissue constructs. This review provides a comprehensive overview of 3D bioprinting techniques, bioinks, and stem cell applications in SCI repair. Additionally, it highlights recent advancements in 3D bioprinted scaffolds, including the integration of conductive materials, the incorporation of bioactive molecules like neurotrophic factors, drugs, and exosomes, and the design of innovative structures such as multi-channel and axial scaffolds. These innovative strategies in 3D bioprinting can offer a comprehensive approach to optimizing the spinal cord microenvironment, advancing SCI repair. This review highlights a comprehensive understanding of the current state of 3D bioprinting in SCI repair, offering insights into future directions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Daniel Youngsuk Kim
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Gyubin Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
17
|
Shi W, Zheng J, Zhang J, Dong X, Li Z, Xiao Y, Li Q, Huang X, Du Y. Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction. Tissue Eng Regen Med 2024; 21:943-957. [PMID: 38937423 PMCID: PMC11286906 DOI: 10.1007/s13770-024-00649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
Collapse
Affiliation(s)
- Wenxin Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoli Dong
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanlai Xiao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| | - Yanfang Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
18
|
Taghdi MH, Muttiah B, Chan AML, Fauzi MB, Law JX, Lokanathan Y. Exploring Synergistic Effects of Bioprinted Extracellular Vesicles for Skin Regeneration. Biomedicines 2024; 12:1605. [PMID: 39062178 PMCID: PMC11275222 DOI: 10.3390/biomedicines12071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components. The integration of 3D bioprinting technology with EVs offers a novel approach to tissue engineering, enabling the precise deposition of EV-loaded bioinks to construct complex three-dimensional (3D) tissue architectures. Unlike traditional cell-based approaches, bioprinted EVs eliminate the need for live cells, thereby mitigating regulatory and financial obstacles associated with cell therapy. By leveraging the synergistic effects of EVs and bioprinting, researchers aim to enhance the therapeutic outcomes of skin regeneration while addressing current limitations in conventional treatments. This review explores the evolving landscape of bioprinted EVs as a transformative approach for skin regeneration. Furthermore, it discusses the challenges and future directions in harnessing this innovative therapy for clinical applications, emphasizing the need for interdisciplinary collaboration and continued scientific inquiry to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Manal Hussein Taghdi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, University of Tripoli, Tripoli P.O. Box 13932, Libya
| | - Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| |
Collapse
|
19
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
20
|
Razavi ZS, Soltani M, Mahmoudvand G, Farokhi S, Karimi-Rouzbahani A, Farasati-Far B, Tahmasebi-Ghorabi S, Pazoki-Toroudi H, Afkhami H. Advancements in tissue engineering for cardiovascular health: a biomedical engineering perspective. Front Bioeng Biotechnol 2024; 12:1385124. [PMID: 38882638 PMCID: PMC11176440 DOI: 10.3389/fbioe.2024.1385124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Myocardial infarction (MI) stands as a prominent contributor to global cardiovascular disease (CVD) mortality rates. Acute MI (AMI) can result in the loss of a large number of cardiomyocytes (CMs), which the adult heart struggles to replenish due to its limited regenerative capacity. Consequently, this deficit in CMs often precipitates severe complications such as heart failure (HF), with whole heart transplantation remaining the sole definitive treatment option, albeit constrained by inherent limitations. In response to these challenges, the integration of bio-functional materials within cardiac tissue engineering has emerged as a groundbreaking approach with significant potential for cardiac tissue replacement. Bioengineering strategies entail fortifying or substituting biological tissues through the orchestrated interplay of cells, engineering methodologies, and innovative materials. Biomaterial scaffolds, crucial in this paradigm, provide the essential microenvironment conducive to the assembly of functional cardiac tissue by encapsulating contracting cells. Indeed, the field of cardiac tissue engineering has witnessed remarkable strides, largely owing to the application of biomaterial scaffolds. However, inherent complexities persist, necessitating further exploration and innovation. This review delves into the pivotal role of biomaterial scaffolds in cardiac tissue engineering, shedding light on their utilization, challenges encountered, and promising avenues for future advancement. By critically examining the current landscape, we aim to catalyze progress toward more effective solutions for cardiac tissue regeneration and ultimately, improved outcomes for patients grappling with cardiovascular ailments.
Collapse
Affiliation(s)
- Zahra-Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Sustainable Business, International Business University, Toronto, ON, Canada
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi-Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahareh Farasati-Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Samaneh Tahmasebi-Ghorabi
- Master of Health Education, Research Expert, Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
21
|
Mubarok W, Zhang C, Sakai S. 3D Bioprinting of Sugar Beet Pectin through Horseradish Peroxidase-Catalyzed Cross-Linking. ACS APPLIED BIO MATERIALS 2024; 7:3506-3514. [PMID: 38696441 DOI: 10.1021/acsabm.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Horseradish peroxidase (HRP)-mediated hydrogelation, caused by the cross-linking of phenolic groups in polymers in the presence of hydrogen peroxide (H2O2), is an effective route for bioink solidification in 3D bioprinting. Sugar beet pectin (SBP) naturally has cross-linkable phenols through the enzymatic reaction. Therefore, chemical modifications are not required, unlike the various polymers that have been used in the enzymatic cross-linking system. In this study, we report the application of SBP in extrusion-based bioprinting including HRP-mediated bioink solidification. In this system, H2O2 necessary for the solidification of inks is supplied in the gas phase. Cell-laden liver lobule-like constructs could be fabricated using bioinks consisting of 10 U/mL HRP, 4.0 and 6.0 w/v% SBP, and 6.0 × 106 cells/mL human hepatoblastoma (HepG2) cells exposed to air containing 16 ppm of H2O2 concurrently during printing and 10 min postprinting. The HepG2 cells enclosed in the printed constructs maintained their viability, metabolic activity, and hepatic functions from day 1 to day 7 of the culture, which indicates the cytocompatibility of this system. Taken together, this result demonstrates the potential of SBP and HRP cross-linking systems for 3D bioprinting, which can be applied in tissue engineering applications.
Collapse
Affiliation(s)
- Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Colin Zhang
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
22
|
Pulumati A, Algarin YA, Kim S, Latta S, Li JN, Nouri K. 3D bioprinting: a review and potential applications for Mohs micrographic surgery. Arch Dermatol Res 2024; 316:147. [PMID: 38698273 DOI: 10.1007/s00403-024-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Mohs Micrographic Surgery (MMS) is effective for treating common cutaneous malignancies, but complex repairs may often present challenges for reconstruction. This paper explores the potential of three-dimensional (3D) bioprinting in MMS, offering superior outcomes compared to traditional methods. 3D printing technologies show promise in advancing skin regeneration and refining surgical techniques in dermatologic surgery. A PubMed search was conducted using the following keywords: "Three-dimensional bioprinting" OR "3-D printing" AND "Mohs" OR "Mohs surgery" OR "Surgery." Peer-reviewed English articles discussing medical applications of 3D bioprinting were included, while non-peer-reviewed and non-English articles were excluded. Patients using 3D MMS models had lower anxiety scores (3.00 to 1.7, p < 0.0001) and higher knowledge assessment scores (5.59 or 93.25% correct responses), indicating better understanding of their procedure. Surgical residents using 3D models demonstrated improved proficiency in flap reconstructions (p = 0.002) and knowledge assessment (p = 0.001). Additionally, 3D printing offers personalized patient care through tailored surgical guides and anatomical models, reducing intraoperative time while enhancing surgical. Concurrently, efforts in tissue engineering and regenerative medicine are being explored as potential alternatives to address organ donor shortages, eliminating autografting needs. However, challenges like limited training and technological constraints persist. Integrating optical coherence tomography with 3D bioprinting may expedite grafting, but challenges remain in pre-printing grafts for complex cases. Regulatory and ethical considerations are paramount for patient safety, and further research is needed to understand long-term effects and cost-effectiveness. While promising, significant advancements are necessary for full utilization in MMS.
Collapse
Affiliation(s)
- Anika Pulumati
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, 455 NE 24th St. Apt 615, Miami, FL, 33137, USA.
| | - Yanci A Algarin
- Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, 455 NE 24th St. Apt 615, Miami, FL, 33137, USA
| | - Sarah Kim
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Steven Latta
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Jeffrey N Li
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, 455 NE 24th St. Apt 615, Miami, FL, 33137, USA
| | - Keyvan Nouri
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, 455 NE 24th St. Apt 615, Miami, FL, 33137, USA
| |
Collapse
|
23
|
Jiang Y, Zhou D, Jiang Y. Three-dimensional bioprinted GelMA/GO composite hydrogel for stem cell osteogenic differentiation both in vitro and in vivo. J Biomater Appl 2024; 38:1087-1099. [PMID: 38561006 DOI: 10.1177/08853282241243337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we evaluated the use of graphene oxide (GO) mixed with methyl methacrylate gelatin (GelMA) for the construction of a microenvironmental implant to repair bone defects in orthopedic surgery. A scaffold containing a GelMA/GO composite with mesenchymal stem cells (MSCs) was constructed using three-dimensional bioprinting. The survival and osteogenic capacity of MSCs in the composite bioink were evaluated using cell viability and proliferation assays, osteogenesis-related gene expression analysis, and implantation under the skin of nude mice. The printing process had little effect on cell viability. We found that GO enhanced cell proliferation but had no significant effect on cell viability. In vitro experiments suggested that GO promoted material-cell interactions and the expression of osteogenesis-related genes. In vivo experiments showed that GO decreased the degradation time of the material and increased calcium nodule deposition. In contrast to pure GelMA, the addition of GO created a suitable microenvironment to promote the differentiation of loaded exogenous MSCs in vitro and in vivo, providing a basis for the repair of bone defects.
Collapse
Affiliation(s)
- Yerong Jiang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Yanan Jiang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Villarreal-Gómez LJ, Cornejo-Bravo JM, Fonthal F. Editorial for the Special Issue on Biomaterials, Biodevices and Tissue Engineering. MICROMACHINES 2024; 15:604. [PMID: 38793177 PMCID: PMC11122819 DOI: 10.3390/mi15050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Biomaterials, biodevices, and tissue engineering represent the cutting edge of medical science, promising revolutionary solutions to some of humanity's most pressing health challenges (Figure 1) [...].
Collapse
Affiliation(s)
- Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Mexico
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana 22300, Mexico;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia;
| |
Collapse
|
25
|
Bhutani U, Dey N, Chowdhury SK, Waghmare N, Mahapatra RD, Selvakumar K, Chandru A, Bhowmick T, Agrawal P. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant. Biomed Mater 2024; 19:035017. [PMID: 38471165 DOI: 10.1088/1748-605x/ad3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Digital light processing (DLP) technology has gained significant attention for its ability to construct intricate structures for various applications in tissue modeling and regeneration. In this study, we aimed to design corneal lenticules using DLP bioprinting technology, utilizing dual network bioinks to mimic the characteristics of the human cornea. The bioink was prepared using methacrylated hyaluronic acid and methacrylated gelatin, where ruthenium salt and sodium persulfate were included for mediating photo-crosslinking while tartrazine was used as a photoabsorber. The bioprinted lenticules were optically transparent (85.45% ± 0.14%), exhibited adhesive strength (58.67 ± 17.5 kPa), and compressive modulus (535.42 ± 29.05 kPa) sufficient for supporting corneal tissue integration and regeneration. Puncture resistance tests and drag force analysis further confirmed the excellent mechanical performance of the lenticules enabling their application as potential corneal implants. Additionally, the lenticules demonstrated outstanding support for re-epithelialization and stromal regeneration when assessed with human corneal stromal cells. We generated implant ready corneal lenticules while optimizing bioink and bioprinting parameters, providing valuable solution for individuals suffering from various corneal defects and waiting for corneal transplants.
Collapse
Affiliation(s)
- Utkarsh Bhutani
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Namit Dey
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Suvro Kanti Chowdhury
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Neha Waghmare
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Rita Das Mahapatra
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Arun Chandru
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
- Pandorum International Inc., San Francisco, CA, United States of America
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| |
Collapse
|
26
|
Zimmerling A, Sunil C, Zhou Y, Chen X. Development of a Nanoparticle System for Controlled Release in Bioprinted Respiratory Scaffolds. J Funct Biomater 2024; 15:20. [PMID: 38248687 PMCID: PMC10816437 DOI: 10.3390/jfb15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The use of nanoparticle systems for the controlled release of growth factors is a promising approach to mimicking of the biochemical environment of native tissues in tissue engineering. However, sustaining growth factor release inside an appropriate therapeutic window is a challenge, particularly in bioprinted scaffolds. In this study, a chitosan-coated alginate-based nanoparticle system loaded with hepatocyte growth factor was developed and then incorporated into bioprinted scaffolds. The release kinetics were investigated with a focus on identifying the impact of the chitosan coating and culture conditions. Our results demonstrated that the chitosan coating decreased the release rate and lessened the initial burst release, while culturing in dynamic conditions had no significant impact compared to static conditions. The nanoparticles were then incorporated into bioinks at various concentrations, and scaffolds with a three-dimensional (3D) structure were bioprinted from the bioinks containing human pulmonary fibroblasts and bronchial epithelial cells to investigate the potential use of a controlled release system in respiratory tissue engineering. It was found that the bioink loaded with a concentration of 4 µg/mL of nanoparticles had better printability compared to other concentrations, while the mechanical stability of the scaffolds was maintained over a 14-day culture period. The examination of the incorporated cells demonstrated a high degree of viability and proliferation with visualization of the beginning of an epithelial barrier layer. Taken together, this study demonstrates that a chitosan-coated alginate-based nanoparticle system allows the sustained release of growth factors in bioprinted respiratory tissue scaffolds.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Christina Sunil
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
27
|
Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 2023; 167:115416. [PMID: 37683592 DOI: 10.1016/j.biopha.2023.115416] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland.
| | | | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland
| |
Collapse
|
28
|
Kaliampakou C, Lagopati N, Pavlatou EA, Charitidis CA. Alginate-Gelatin Hydrogel Scaffolds; An Optimization of Post-Printing Treatment for Enhanced Degradation and Swelling Behavior. Gels 2023; 9:857. [PMID: 37998946 PMCID: PMC10671076 DOI: 10.3390/gels9110857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
The generation of 3D structures comprises three interlinked phases: material development, the printing process, and post-printing treatment. Numerous factors control all three phases, making the optimization of the entire process a challenging task. Until now, the state of the art has mainly focused on optimizing material processability and calibration of the printing process. However, after the successful Direct Ink Writing (DIW) of a hydrogel scaffold, the post-printing stage holds equal importance, as this allows for the treatment of the structure to ensure the preservation of its structural integrity for a duration that is sufficient to enable successful cell attachment and proliferation before undergoing degradation. Despite this stage's pivotal role, there is a lack of extensive literature covering its optimization. By studying the crosslinking factors and leveling the post-treatment settings of alginate-gelatin hydrogel, this study proposes a method to enhance scaffolds' degradation without compromising the targeted swelling behavior. It introduces an experimental design implementing the Response Surface Methodology (RSM) Design of Experiments (DoE), which elucidated the key parameters influencing scaffold degradation and swelling, and established an alginate ratio of 8% and being immersed for 15 min in 0.248 M CaCl2 as the optimal level configuration that generates a solution of 0.964 desirability, reaching a degradation time of 19.654 days and the swelling ratio of 50.00%.
Collapse
Affiliation(s)
- Christina Kaliampakou
- RNanoLab, Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, Zografos Campus, National Technical University of Athens, 9 Heroon, Polytechniou St., 15780 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece;
| | - Costas A. Charitidis
- RNanoLab, Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, Zografos Campus, National Technical University of Athens, 9 Heroon, Polytechniou St., 15780 Athens, Greece;
| |
Collapse
|
29
|
Riccio M, Bondioli E, Senesi L, Zingaretti N, Gargiulo P, De Francesco F, Parodi PC, Zavan B. Fragmented Dermo-Epidermal Units (FdeU) as an Emerging Strategy to Improve Wound Healing Process: An In Vitro Evaluation and a Pilot Clinical Study. J Clin Med 2023; 12:6165. [PMID: 37834809 PMCID: PMC10573238 DOI: 10.3390/jcm12196165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Innovative strategies have shown beneficial effects in healing wound management involving, however, a time-consuming and arduous process in clinical contexts. Micro-fragmented skin tissue acts as a slow-released natural scaffold and continuously delivers growth factors, and much other modulatory information, into the microenvironment surrounding damaged wounds by a paracrine function on the resident cells which supports the regenerative process. In this study, in vitro and in vivo investigations were conducted to ascertain improved effectiveness and velocity of the wound healing process with the application of fragmented dermo-epidermal units (FdeU), acquired via a novel medical device (Hy-Tissue® Micrograft Technology). MTT test; LDH test; ELISA for growth factor investigation (IL) IL-2, IL-6, IL-7 IL-8, IL-10; IGF-1; adiponectin; Fibroblast Growth Factor (FGF); Vascular Endothelial Growth Factor (VEGF); and Tumor Necrosis Factor (TNF) were assessed. Therefore, clinical evaluation in 11 patients affected by Chronic Wounds (CW) and treated with FdeU were investigated. Functional outcome was assessed pre-operatory, 2 months after treatment (T0), and 6 months after treatment (T1) using the Wound Bed Score (WBS) and Vancouver Scar Scale (VSS). In this current study, we demonstrate the potential of resident cells to proliferate from the clusters of FdeU seeded in a monolayer that efficiently propagate the chronic wound. Furthermore, in this study we report how the discharge of trophic/reparative proteins are able to mediate the in vitro paracrine function of proliferation, migration, and contraction rate in fibroblasts and keratinocytes. Our investigations recommend FdeU as a favorable tool in wound healing, displaying in vitro growth-promoting potential to enhance current therapeutic mechanisms.
Collapse
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Elena Bondioli
- Burn Center and Emilia Romagna Regional Skin Bank, Bufalini Hospital, AUSL della Romagna, 47521 Cesena, Italy;
| | - Letizia Senesi
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Paolo Gargiulo
- Engineering Department, King’s College, London WC2R 2LS, UK;
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
30
|
Kühl J, Gorb S, Kern M, Klüter T, Kühl S, Seekamp A, Fuchs S. Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure. Front Bioeng Biotechnol 2023; 11:1268049. [PMID: 37790253 PMCID: PMC10544914 DOI: 10.3389/fbioe.2023.1268049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Critical-sized bone defects resulting from trauma, inflammation, and tumor resections are individual in their size and shape. Implants for the treatment of such defects have to consider biomechanical and biomedical factors, as well as the individual conditions within the implantation site. In this context, 3D printing technologies offer new possibilities to design and produce patient-specific implants reflecting the outer shape and internal structure of the replaced bone tissue. The selection or modification of materials used in 3D printing enables the adaption of the implant, by enhancing the osteoinductive or biomechanical properties. In this study, scaffolds with bone spongiosa-inspired structure for extrusion-based 3D printing were generated. The computer aided design process resulted in an up scaled and simplified version of the bone spongiosa. To enhance the osteoinductive properties of the 3D printed construct, polycaprolactone (PCL) was combined with 20% (wt) calcium phosphate nano powder (CaP). The implants were designed in form of a ring structure and revealed an irregular and interconnected porous structure with a calculated porosity of 35.2% and a compression strength within the range of the natural cancellous bone. The implants were assessed in terms of biocompatibility and osteoinductivity using the osteosarcoma cell line MG63 and patient-derived mesenchymal stem cells in selected experiments. Cell growth and differentiation over 14 days were monitored using confocal laser scanning microscopy, scanning electron microscopy, deoxyribonucleic acid (DNA) quantification, gene expression analysis, and quantitative assessment of calcification. MG63 cells and human mesenchymal stem cells (hMSC) adhered to the printed implants and revealed a typical elongated morphology as indicated by microscopy. Using DNA quantification, no differences for PCL or PCL-CaP in the initial adhesion of MG63 cells were observed, while the PCL-based scaffolds favored cell proliferation in the early phases of culture up to 7 days. In contrast, on PCL-CaP, cell proliferation for MG63 cells was not evident, while data from PCR and the levels of calcification, or alkaline phosphatase activity, indicated osteogenic differentiation within the PCL-CaP constructs over time. For hMSC, the highest levels in the total calcium content were observed for the PCL-CaP constructs, thus underlining the osteoinductive properties.
Collapse
Affiliation(s)
- Julie Kühl
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Material, University Medical Center, Kiel, Germany
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sebastian Kühl
- Department of Electrical and Information Engineering, Kiel University, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| |
Collapse
|
31
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
32
|
Immohr MB, Teichert HL, Dos Santos Adrego F, Schmidt V, Sugimura Y, Bauer SJ, Barth M, Lichtenberg A, Akhyari P. Three-Dimensional Bioprinting of Ovine Aortic Valve Endothelial and Interstitial Cells for the Development of Multicellular Tissue Engineered Tissue Constructs. Bioengineering (Basel) 2023; 10:787. [PMID: 37508814 PMCID: PMC10376021 DOI: 10.3390/bioengineering10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the pathogenic mechanisms of calcified aortic valve disease (CAVD), it is necessary to develop a new three-dimensional model that contains valvular interstitial cells (VIC) and valvular endothelial cells (VEC). For this purpose, ovine aortic valves were processed to isolate VIC and VEC that were dissolved in an alginate/gelatin hydrogel. A 3D-bioprinter (3D-Bioplotter® Developer Series, EnvisionTec, Gladbeck, Germany) was used to print cell-laden tissue constructs containing VIC and VEC which were cultured for up to 21 days. The 3D-architecture, the composition of the culture medium, and the hydrogels were modified, and cell viability was assessed. The composition of the culture medium directly affected the cell viability of the multicellular tissue constructs. Co-culture of VIC and VEC with a mixture of 70% valvular interstitial cell and 30% valvular endothelial cell medium components reached the cell viability best tested with about 60% more living cells compared to pure valvular interstitial cell medium (p = 0.02). The tissue constructs retained comparable cell viability after 21 days (p = 0.90) with different 3D-architectures, including a "sandwich" and a "tube" design. Good long-term cell viability was confirmed even for thick multilayer multicellular tissue constructs. The 3D-bioprinting of multicellular tissue constructs with VEC and VIC is a successful new technique to design tissue constructs that mimic the structure of the native aortic valve for research applications of aortic valve pathologies.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Helena Lauren Teichert
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Fabió Dos Santos Adrego
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Vera Schmidt
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Sebastian Johannes Bauer
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
33
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
34
|
Jiao K, Liu C, Basu S, Raveendran N, Nakano T, Ivanovski S, Han P. Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:218-239. [PMID: 39697984 PMCID: PMC11648406 DOI: 10.20517/evcna.2023.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 12/20/2024]
Abstract
Regenerative medicine involves the restoration of tissue or organ function via the regeneration of these structures. As promising regenerative medicine approaches, either extracellular vesicles (EVs) or bioprinting are emerging stars to regenerate various tissues and organs (i.e., bone and cardiac tissues). Emerging as highly attractive cell-free, off-the-shelf nanotherapeutic agents for tissue regeneration, EVs are bilayered lipid membrane particles that are secreted by all living cells and play a critical role as cell-to-cell communicators through an exchange of EV cargos of protein, genetic materials, and other biological components. 3D bioprinting, combining 3D printing and biology, is a state-of-the-art additive manufacturing technology that uses computer-aided processes to enable simultaneous patterning of 3D cells and tissue constructs in bioinks. Although developing an effective system for targeted EVs delivery remains challenging, 3D bioprinting may offer a promising means to improve EVs delivery efficiency with controlled loading and release. The potential application of 3D bioprinted EVs to regenerate tissues has attracted attention over the past few years. As such, it is timely to explore the potential and associated challenges of utilizing 3D bioprinted EVs as a novel "cell-free" alternative regenerative medicine approach. In this review, we describe the biogenesis and composition of EVs, and the challenge of isolating and characterizing small EVs - sEVs (< 200 nm). Common 3D bioprinting techniques are outlined and the issue of bioink printability is explored. After applying the following search strategy in PubMed: "bioprinted exosomes" or "3D bioprinted extracellular vesicles", eight studies utilizing bioprinted EVs were found that have been included in this scoping review. Current studies utilizing bioprinted sEVs for various in vitro and in vivo tissue regeneration applications, including angiogenesis, osteogenesis, immunomodulation, chondrogenesis and myogenesis, are discussed. Finally, we explore the current challenges and provide an outlook on possible refinements for bioprinted sEVs applications.
Collapse
Affiliation(s)
- Kexin Jiao
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Chun Liu
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
| | - Saraswat Basu
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
| | - Nimal Raveendran
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Tamaki Nakano
- Hokkaido University, Institute for Catalysis (ICAT), N21 W10, Kita-ku, Sapporo 001-0021, Japan
| | - Sašo Ivanovski
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Pingping Han
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| |
Collapse
|
35
|
Cavallo A, Al Kayal T, Mero A, Mezzetta A, Pisani A, Foffa I, Vecoli C, Buscemi M, Guazzelli L, Soldani G, Losi P. Marine Collagen-Based Bioink for 3D Bioprinting of a Bilayered Skin Model. Pharmaceutics 2023; 15:pharmaceutics15051331. [PMID: 37242573 DOI: 10.3390/pharmaceutics15051331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen. Marine collagen, compared to mammalian collagen, can be easily extracted, is water-soluble, avoids transmissible diseases and owns anti-microbial activities. Recent studies have reported marine collagen as a suitable biomaterial for skin tissue regeneration. The aim of this work was to investigate, for the first time, marine collagen from basa fish skin for the development of a bioink for extrusion 3D bioprinting of a bilayered skin model. The bioinks were obtained by mixing semi-crosslinked alginate with 10 and 20 mg/mL of collagen. The bioinks were characterised by evaluating the printability in terms of homogeneity, spreading ratio, shape fidelity and rheological properties. Morphology, degradation rate, swelling properties and antibacterial activity were also evaluated. The alginate-based bioink containing 20 mg/mL of marine collagen was selected for 3D bioprinting of skin-like constructs with human fibroblasts and keratinocytes. The bioprinted constructs showed a homogeneous distribution of viable and proliferating cells at days 1, 7 and 14 of culture evaluated by qualitative (live/dead) and qualitative (XTT) assays, and histological (H&E) and gene expression analysis. In conclusion, marine collagen can be successfully used to formulate a bioink for 3D bioprinting. In particular, the obtained bioink can be printed in 3D structures and is able to support fibroblasts and keratinocytes viability and proliferation.
Collapse
Affiliation(s)
- Aida Cavallo
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Tamer Al Kayal
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Anissa Pisani
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Ilenia Foffa
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Cecilia Vecoli
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | | | | | | | - Paola Losi
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| |
Collapse
|
36
|
Mirek A, Belaid H, Bartkowiak A, Barranger F, Salmeron F, Kajdan M, Grzeczkowicz M, Cavaillès V, Lewińska D, Bechelany M. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. BIOMATERIALS ADVANCES 2023; 150:213436. [PMID: 37104964 DOI: 10.1016/j.bioadv.2023.213436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
3D bioprinted hydrogel constructs are advanced systems of a great drug delivery application potential. One of the bioinks that has recently gained a lot of attention is gelatin methacrylate (GelMA) hydrogel exhibiting specific properties, including UV cross-linking possibility. The present study aimed to develop a new bioink composed of GelMA and gelatin modified by addition of polymer (polycaprolactone or polyethersulfone) microspheres serving as bioactive substance carriers. The prepared microspheres suspension in GelMA/gelatin bioink was successfully bioprinted and subjected to various tests, which showed that the addition of microspheres and their type affects the physicochemical properties of the printouts. The hydrogel stability and structure was examined using scanning electron and optical microscopy, its thermal properties with differential scanning calorimetry and thermogravimetric analysis and its biocompatibility on HaCaT cells using viability assay and electron microscopy. Analyses also included tests of hydrogel equilibrium swelling ratio and release of marker substance. Subsequently, the matrices were loaded with ampicillin and the antibiotic release was validated by monitoring the antibacterial activity on Staphylococcus aureus and Escherichia coli. It was concluded that GelMA/gelatin bioink is a good and satisfying material for potential medical use. Depending on the polymer used, the addition of microspheres improves its structure, thermal and drug delivery properties.
Collapse
Affiliation(s)
- Adam Mirek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland; Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Aleksandra Bartkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Fanny Barranger
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Fanny Salmeron
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Marcin Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Dorota Lewińska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France; Gulf University for Science and Technology, GUST, Kuwait.
| |
Collapse
|
37
|
Kiwanuka H, Wang AT, Orgill DP. Advances in Translational Regenerative Therapies. J Clin Med 2023; 12:jcm12082838. [PMID: 37109176 PMCID: PMC10141463 DOI: 10.3390/jcm12082838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Regenerative medicine aims to replace damaged cells and tissues following injury [...].
Collapse
Affiliation(s)
- Harriet Kiwanuka
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Dennis P Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Dos Santos Jorge Sousa K, Parisi JR, de Souza A, Cruz MDA, Erbereli R, de Araújo Silva J, do Espirito Santo G, do Amaral GO, Martignago CCS, Fortulan CA, Granito RN, Renno ACM. 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:259-271. [PMID: 36892731 DOI: 10.1007/s10126-023-10202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/18/2023] [Indexed: 05/06/2023]
Abstract
The inorganic part of marine sponges, called Biosilica (BS), presents an osteogenic potential and the ability of consolidating fractures. Moreover, 3D printing technique is highly effective for manufacturing scaffolds for tissue engineering proposals. Thus, the aims of this study were to characterize the 3D rinted scaffolds, to evaluate the biological effects in vitro and to investigate the in vivo response using an experimental model of cranial defects in rats. The physicochemical characteristics of 3D printed BS scaffolds were analyzed by FTIR, EDS, calcium assay, evaluation of mass loss and pH measurement. For in vitro analysis, the MC3T3-E1 and L929 cells viability was evaluated. For the in vivo evaluation, histopathology, morphometrical and immunohistochemistry analyses were performed in a cranial defect in rats. After the incubation, the 3D printed BS scaffolds presented lower values in pH and mass loss over time. Furthermore, the calcium assay showed an increased Ca uptake. The FTIR analysis indicated the characteristic peaks for materials with silica and the EDS analysis demonstrated the main presence of silica. Moreover, 3D printed BS demonstrated an increase in MC3T3-E1 and L929 cell viability in all periods analyzed. In addition, the histological analysis demonstrated no inflammation in days 15 and 45 post-surgery, and regions of newly formed bone were also observed. The immunohistochemistry analysis demonstrated increased Runx-2 and OPG immunostaining. Those findings support that 3D printed BS scaffolds may improve the process of bone repair in a critical bone defect as a result of stimulation of the newly formed bone.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil.
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, 11045002, Santos, SP, Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Rogério Erbereli
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Jonas de Araújo Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Gustavo Oliva do Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | | | - Carlos Alberto Fortulan
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| |
Collapse
|
39
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Samadi A, Esmaeili J, Arshad R, Rahdar A, Tavangarian F, Pandey S. Novel Carboxymethyl cellulose based nanocomposite: A Promising Biomaterial for Biomedical Applications. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
40
|
Huan Y, Zhou D, Wu X, He X, Chen H, Li S, Jia B, Dou Y, Fei X, Wu S, Wei J, Fei Z, Xu T, Fei F. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with both implanted and native BMSCs. Biofabrication 2023; 15. [PMID: 36812580 DOI: 10.1088/1758-5090/acbe21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Although autologous bone (AB) grafting is considered to be the gold standard for cranioplasty, unresolved problems remain, such as surgical-site infections and bone flap absorption. In this study, an AB scaffold was constructed via three-dimensional (3D) bedside-bioprinting technology and used for cranioplasty. To simulate the skull structure, a polycaprolactone shell was designed as an external lamina, and 3D-printed AB and a bone marrow-derived mesenchymal stem cell (BMSC) hydrogel was used to mimic cancellous bone for bone regeneration. Ourin vitroresults showed that the scaffold exhibited excellent cellular affinity and promoted osteogenic differentiation of BMSCs in both two-dimensional and 3D culture systems. The scaffold was implanted in beagle dog cranial defects for up to 9 months, and the scaffold promoted new bone and osteoid formation. Furtherin vivostudies indicated that transplanted BMSCs differentiated into vascular endothelium, cartilage, and bone tissues, whereas native BMSCs were recruited into the defect. The results of this study provide a method for bedside bioprinting of a cranioplasty scaffold for bone regeneration, which opens up another window for clinical applications of 3D printing in the future.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, People's Republic of China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
41
|
Developments and Clinical Applications of Biomimetic Tissue Regeneration using 3D Bioprinting Technique. Appl Bionics Biomech 2022; 2022:2260216. [PMID: 36582589 PMCID: PMC9794424 DOI: 10.1155/2022/2260216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tissue engineers have made great strides in the past decade thanks to the advent of three-dimensional (3D) bioprinting technology, which has allowed them to create highly customized biological structures with precise geometric design ability, allowing us to close the gap between manufactured and natural tissues. In this work, we first survey the state-of-the-art methods, cells, and materials for 3D bioprinting. The modern uses of this method in tissue engineering are then briefly discussed. Following this, the main benefits of 3D bioprinting in tissue engineering are outlined in depth, including the ability to rapidly prototype the individualized structure and the ability to engineer with a highly controllable microenvironment. Finally, we offer some predictions for the future of 3D bioprinting in the field of tissue engineering.
Collapse
|
42
|
Immohr MB, Dos Santos Adrego F, Teichert HL, Schmidt V, Sugimura Y, Bauer S, Barth M, Lichtenberg A, Akhyari P. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Biomed Mater 2022; 18. [PMID: 36322974 DOI: 10.1088/1748-605x/ac9f91] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
Calcific aortic valve disease (CAVD) is a frequent cardiac pathology in the aging society. Although valvular interstitial cells (VICs) seem to play a crucial role, mechanisms of CAVD are not fully understood. Development of tissue-engineered cellular models by 3D-bioprinting may help to further investigate underlying mechanisms of CAVD. VIC were isolated from ovine aortic valves and cultured in Dulbecco's modified Eagle's Medium (DMEM). VIC of passages six to ten were dissolved in a hydrogel consisting of 2% alginate and 8% gelatin with a concentration of 2 × 106VIC ml-1. Cell-free and VIC-laden hydrogels were printed with an extrusion-based 3D-bioprinter (3D-Bioplotter®Developer Series, EnvisionTec, Gladbeck, Germany), cross-linked and incubated for up to 28 d. Accuracy and durability of scaffolds was examined by microscopy and cell viability was tested by cell counting kit-8 assay and live/dead staining. 3D-bioprinting of scaffolds was most accurate with a printing pressure ofP< 400 hPa, nozzle speed ofv< 20 mm s-1, hydrogel temperature ofTH= 37 °C and platform temperature ofTP= 5 °C in a 90° parallel line as well as in a honeycomb pattern. Dissolving the hydrogel components in DMEM increased VIC viability on day 21 by 2.5-fold compared to regular 0.5% saline-based hydrogels (p< 0.01). Examination at day 7 revealed dividing and proliferating cells. After 21 d the entire printed scaffolds were filled with proliferating cells. Live/dead cell viability/cytotoxicity staining confirmed beneficial effects of DMEM-based cell-laden VIC hydrogel scaffolds even 28 d after printing. By using low pressure printing methods, we were able to successfully culture cell-laden 3D-bioprinted VIC scaffolds for up to 28 d. Using DMEM-based hydrogels can significantly improve the long-term cell viability and overcome printing-related cell damage. Therefore, future applications 3D-bioprinting of VIC might enable the development of novel tissue engineered cellular 3D-models to examine mechanisms involved in initiation and progression of CAVD.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fabió Dos Santos Adrego
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Helena Lauren Teichert
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vera Schmidt
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bauer
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,CARID-Cardiovascular Research Institute Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
Zhong Y, Huang S, Feng Z, Fu Y, Mo A. Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. J Biomed Mater Res A 2022; 110:1840-1859. [PMID: 35975580 DOI: 10.1002/jbm.a.37438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
MXene, as a new two-dimensional nanomaterial, is endowed with lots of particular properties, such as large surface area, excellent conductivity, biocompatibility, biodegradability, hydrophilicity, antibacterial activity, and so on. In the past few years, MXene nanomaterials have become a rising star in biomedical fields including biological imaging, tumor diagnosis, biosensor, and tissue engineering. In this review, we sum up the recent applications of MXene nanomaterials in the field of tissue engineering and regeneration. First, we briefly introduced the synthesis and surface modification engineering of MXene. Then we focused on the application and development of MXene and MXene-based composites in skin, bone, nerve and heart tissue engineering. Uniquely, we also paid attention to some research on MXene with few achievements at present but might become a new trend in tissue engineering and regeneration in the future. Finally, this paper will also discuss several challenges faced by MXene nanomaterials in the clinical application of tissue engineering.
Collapse
Affiliation(s)
- Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
MacAdam A, Chaudry E, McTiernan CD, Cortes D, Suuronen EJ, Alarcon EI. Development of in situ bioprinting: A mini review. Front Bioeng Biotechnol 2022; 10:940896. [PMID: 35935512 PMCID: PMC9355423 DOI: 10.3389/fbioe.2022.940896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting has rapidly progressed over the past decade. One branch of bioprinting known as in situ bioprinting has benefitted considerably from innovations in biofabrication. Unlike ex situ bioprinting, in situ bioprinting allows for biomaterials to be printed directly into or onto the target tissue/organ, eliminating the need to transfer pre-made three-dimensional constructs. In this mini-review, recent progress on in situ bioprinting, including bioink composition, in situ crosslinking strategies, and bioprinter functionality are examined. Future directions of in situ bioprinting are also discussed including the use of minimally invasive bioprinters to print tissues within the body.
Collapse
Affiliation(s)
- Aidan MacAdam
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emaan Chaudry
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christopher D. McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J. Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emilio I. Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
45
|
Xing F, Yin HM, Zhe M, Xie JC, Duan X, Xu JZ, Xiang Z, Li ZM. Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14071437. [PMID: 35890332 PMCID: PMC9317219 DOI: 10.3390/pharmaceutics14071437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
3D-printing technology can be used to construct personalized bone substitutes with customized shapes, but it cannot regulate the topological morphology of the scaffold surface, which plays a vital role in regulating the biological behaviors of stem cells. In addition, stem cells are able to sense the topographical and mechanical cues of surface of scaffolds by mechanosensing and mechanotransduction. In our study, we fabricated a 3D-printed poly(ε-caprolactone) (PCL) scaffold with a nanotopographical surface and loaded it with urine-derived stem cells (USCs) for application of bone regeneration. The topological 3D-printed PCL scaffolds (TPS) fabricated by surface epiphytic crystallization, possessed uniformly patterned nanoridges, of which the element composition and functional groups of nanoridges were the same as PCL. Compared with bare 3D-printed PCL scaffolds (BPS), TPS have a higher ability for protein adsorption and mineralization in vitro. The proliferation, cell length, and osteogenic gene expression of USCs on the surface of TPS were significantly higher than that of BPS. In addition, the TPS loaded with USCs exhibited a good ability for bone regeneration in cranial bone defects. Our study demonstrated that nanotopographical 3D-printed scaffolds loaded with USCs are a safe and effective therapeutic strategy for bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Hua-Mo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ji-Chang Xie
- Laboratoire Roberval, FRE UTC-CNRS 2012, Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS60319, CEDEX, 60203 Compiègne, France;
| | - Xin Duan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| |
Collapse
|
46
|
Zhao Y, Liu Y, Dai Y, Yang L, Chen G. Application of 3D Bioprinting in Urology. MICROMACHINES 2022; 13:mi13071073. [PMID: 35888890 PMCID: PMC9321242 DOI: 10.3390/mi13071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022]
Abstract
Tissue engineering is an emerging field to create functional tissue components and whole organs. The structural and functional defects caused by congenital malformation, trauma, inflammation or tumor are still the major clinical challenges facing modern urology, and the current treatment has not achieved the expected results. Recently, 3D bioprinting has gained attention for its ability to create highly specialized tissue models using biological materials, bridging the gap between artificially engineered and natural tissue structures. This paper reviews the research progress, application prospects and current challenges of 3D bioprinting in urology tissue engineering.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu 610000, China;
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| | - Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| |
Collapse
|
47
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
48
|
Lovecchio J, Cortesi M, Zani M, Govoni M, Dallari D, Giordano E. Fiber Thickness and Porosity Control in a Biopolymer Scaffold 3D Printed through a Converted Commercial FDM Device. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2394. [PMID: 35407727 PMCID: PMC8999610 DOI: 10.3390/ma15072394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
3D printing has opened exciting new opportunities for the in vitro fabrication of biocompatible hybrid pseudo-tissues. Technologies based on additive manufacturing herald a near future when patients will receive therapies delivering functional tissue substitutes for the repair of their musculoskeletal tissue defects. In particular, bone tissue engineering (BTE) might extensively benefit from such an approach. However, designing an optimal 3D scaffold with adequate stiffness and biodegradability properties also guaranteeing the correct cell adhesion, proliferation, and differentiation, is still a challenge. The aim of this work was the rewiring of a commercial fuse deposition modeling (FDM) 3D printer into a 3D bioplotter, aiming at obtaining scaffold fiber thickness and porosity control during its manufacturing. Although it is well-established that FDM is a fast and low-price technology, the high temperatures required for printing lead to limitations in the biomaterials that can be used. In our hands, modifying the printing head of the FDM device with a custom-made holder has allowed to print hydrogels commonly used for embedding living cells. The results highlight a good resolution, reproducibility and repeatability of alginate/gelatin scaffolds obtained via our custom 3D bioplotter prototype, showing a viable strategy to equip a small-medium laboratory with an instrument for manufacturing good-quality 3D scaffolds for cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
| | - Marilisa Cortesi
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney 2031, Australia
| | - Marco Zani
- Mark One S.r.l., 47521 Cesena, FC, Italy;
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, RE, Italy; (M.G.); (D.D.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, RE, Italy; (M.G.); (D.D.)
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum, University of Bologna, 40064 Ozzano Emilia, BO, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
49
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|