1
|
Wang Z, Wu J, Lv Z, Liang P, Li Q, Li Y, Guo Y. LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy. J Adv Res 2025:S2090-1232(25)00001-3. [PMID: 39827909 DOI: 10.1016/j.jare.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The genetic variants of LMNA cause an array of diseases that often affect the heart. LMNA-related cardiomyopathy exhibits high-penetrance and early-onset phenotypes that lead to late-stage heart failure or lethal arrhythmia. As a subtype of dilated cardiomyopathy and arrhythmogenic cardiomyopathy, LMNA-related cardiac dysfunction is resistant to existing cardiac therapeutic strategies, leaving a major unmet clinical need in cardiomyopathy management. AIM OF REVIEW Here we comprehensively summarize current knowledge about the genetic basis, disease models and pathological mechanisms of LMNA-related cardiomyopathy. Recent translational studies were highlighted to indicate new therapeutic modalities such as gene supplementation, gene silencing and genome editing therapy, which offer potential opportunities to overcome the difficulties in the development of specific drugs for this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW LMNA-related cardiomyopathy involves many diverse disease mechanisms that preclude small-molecule drugs that target only a small fraction of the mechanisms. Agreeing to this notion, the first-in-human clinical trial for this disease recently reported futility. By contrast, gene therapy offers the new hope to directly intervene LMNA variants and demonstrates a tremendous potential for breakthrough therapy for this disease. Concepts in this review are also applicable to studies of other genetic diseases that lack effective therapeutics.
Collapse
Affiliation(s)
- Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiahao Wu
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyuan Lv
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Qirui Li
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Yifei Li
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
2
|
Garcia‐Pavia P, Lakdawala NK, Sinagra G, Ripoll‐Vera T, Afshar K, Priori SG, Ware JS, Owens A, Li H, Angeli FS, Elliott P, MacRae CA, Judge DP. Characterization and natural history of patients with LMNA-related dilated cardiomyopathy in the phase 3 REALM-DCM trial. ESC Heart Fail 2024; 11:4201-4208. [PMID: 39145700 PMCID: PMC11631308 DOI: 10.1002/ehf2.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS LMNA-related dilated cardiomyopathy (DCM) is a rare disease with an incompletely defined phenotype. The phase 3 REALM-DCM trial evaluated a potential disease-modifying therapy for LMNA-related DCM but was terminated due to futility without safety concern. This study utilized pooled data from REALM-DCM to descriptively characterize the phenotype and progression of LMNA-related DCM in a contemporary cohort of patients using common heart failure (HF) measures. METHODS REALM-DCM enrolled patients with stable LMNA-related DCM, an implanted cardioverter defibrillator or cardiac resynchronization therapy defibrillator, and New York Heart Association (NYHA) Class II/III HF symptoms. RESULTS Between 2018 and 2022, 77 patients took part in REALM-DCM. The median patient age was 53 years (range: 23-72), and 57% were male. Overall, 88% of patients had a pathogenic or likely pathogenic LMNA variant, and 12% had a variant of uncertain significance with a concordant phenotype. Among patients with confirmed sequencing, 55% had a missense variant. Atrial fibrillation was present in 60% of patients; 79% of all patients had NYHA Class II and 21% had NYHA Class III HF symptoms at baseline. Median (range) left ventricular ejection fraction (LVEF), 6 min walk test (6MWT) distance, Kansas City Cardiomyopathy Questionnaire Overall Summary (KCCQ-OS) score and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration at baseline were 42% (23-62), 403 m (173-481), 67 (18-97) and 866 pg/mL (57-5248), respectively. LVEF, 6MWT distance and KCCQ-OS score were numerically lower in patients who had NYHA Class III versus II symptoms at baseline (LVEF: 38% vs. 43%; 6MWT distance: 326 vs. 413 m; and KCCQ-OS score: 43 vs. 70), whereas NT-proBNP concentration was higher (1216 vs. 799 pg/mL). Median follow-up was 73 weeks (range: 0.4-218; 73 in NYHA Class II and 75 in NYHA Class III). Patients displayed variable change from baseline in 6MWT, KCCQ-OS and NT-proBNP values during follow-up. Overall, 25% of patients experienced ventricular tachycardia, and 8% had ventricular fibrillation. Ten (13%) patients met the composite endpoint of worsening HF (adjudicated HF-related hospitalization or urgent care visit) or all-cause death; six had NYHA Class II and four had NYHA Class III at baseline. All-cause mortality occurred in 6 (8%) patients; three had NYHA Class II and three had NYHA Class III symptoms at baseline. CONCLUSIONS Findings confirm the significant morbidity and mortality associated with LMNA-related DCM despite the standard of care management. Typical measures of HF, including 6MWT distance, KCCQ-OS score and NT-proBNP concentration, were variable but correlated with NYHA class. An unmet treatment need remains among patients with LMNA-related DCM. NCT03439514.
Collapse
Affiliation(s)
- Pablo Garcia‐Pavia
- Hospital Universitario Puerta de Hierro MajadahondaMadridSpain
- Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)MadridSpain
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Universidad Francisco de Vitoria (UFV)MadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Neal K. Lakdawala
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of TriesteTriesteItaly
| | - Tomas Ripoll‐Vera
- Hospital Universitario Son LlatzerMallorcaSpain
- Health Research Institute of the Balearic Islands (IdISBa)MallorcaSpain
- Department of MedicineUniversity of the Balearic IslandsMallorcaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Institute of Health Carlos IIIMadridSpain
| | - Kia Afshar
- Intermountain Heart InstituteSalt Lake CityUtahUSA
| | - Silvia G. Priori
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- IRCCS Istituti Clinici Scientifici Maugeri SpA SB of PaviaPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - James S. Ware
- National Heart & Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Anjali Owens
- University of Pennsylvania Heart and Vascular CenterPhiladelphiaPennsylvaniaUSA
| | - Huihua Li
- Pfizer Inc.CollegevillePennsylvaniaUSA
| | | | | | - Calum A. MacRae
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel P. Judge
- Cardiovascular GeneticsMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
3
|
Wu XY, Lee YK, Lau YM, Au KW, Tse YL, Ng KM, Wong CK, Tse HF. The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models. Pharmaceuticals (Basel) 2024; 17:1030. [PMID: 39204134 PMCID: PMC11357512 DOI: 10.3390/ph17081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
4
|
Garcia-Pavia P, Palomares JFR, Sinagra G, Barriales-Villa R, Lakdawala NK, Gottlieb RL, Goldberg RI, Elliott P, Lee P, Li H, Angeli FS, Judge DP, MacRae CA. REALM-DCM: A Phase 3, Multinational, Randomized, Placebo-Controlled Trial of ARRY-371797 in Patients With Symptomatic LMNA-Related Dilated Cardiomyopathy. Circ Heart Fail 2024; 17:e011548. [PMID: 38979608 PMCID: PMC11244753 DOI: 10.1161/circheartfailure.123.011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND LMNA (lamin A/C)-related dilated cardiomyopathy is a rare genetic cause of heart failure. In a phase 2 trial and long-term extension, the selective p38α MAPK (mitogen-activated protein kinase) inhibitor, ARRY-371797 (PF-07265803), was associated with an improved 6-minute walk test at 12 weeks, which was preserved over 144 weeks. METHODS REALM-DCM (NCT03439514) was a phase 3, randomized, double-blind, placebo-controlled trial in patients with symptomatic LMNA-related dilated cardiomyopathy. Patients with confirmed LMNA variants, New York Heart Association class II/III symptoms, left ventricular ejection fraction ≤50%, implanted cardioverter-defibrillator, and reduced 6-minute walk test distance were randomized to ARRY-371797 400 mg twice daily or placebo. The primary outcome was a change from baseline at week 24 in the 6-minute walk test distance using stratified Hodges-Lehmann estimation and the van Elteren test. Secondary outcomes using similar methodology included change from baseline at week 24 in the Kansas City Cardiomyopathy Questionnaire-physical limitation and total symptom scores, and NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration. Time to a composite outcome of worsening heart failure or all-cause mortality and overall survival were evaluated using Kaplan-Meier and Cox proportional hazards analyses. RESULTS REALM-DCM was terminated after a planned interim analysis suggested futility. Between April 2018 and October 2022, 77 patients (aged 23-72 years) received ARRY-371797 (n=40) or placebo (n=37). No significant differences (P>0.05) between groups were observed in the change from baseline at week 24 for all outcomes: 6-minute walk test distance (median difference, 4.9 m [95% CI, -24.2 to 34.1]; P=0.82); Kansas City Cardiomyopathy Questionnaire-physical limitation score (2.4 [95% CI, -6.4 to 11.2]; P=0.54); Kansas City Cardiomyopathy Questionnaire-total symptom score (5.3 [95% CI, -4.3 to 14.9]; P=0.48); and NT-proBNP concentration (-339.4 pg/mL [95% CI, -1131.6 to 452.7]; P=0.17). The composite outcome of worsening heart failure or all-cause mortality (hazard ratio, 0.43 [95% CI, 0.11-1.74]; P=0.23) and overall survival (hazard ratio, 1.19 [95% CI, 0.23-6.02]; P=0.84) were similar between groups. No new safety findings were observed. CONCLUSIONS Findings from REALM-DCM demonstrated futility without safety concerns. An unmet treatment need remains among patients with LMNA-related dilated cardiomyopathy. REGISTRATION URL: https://classic.clinicaltrials.gov; Unique Identifiers: NCT03439514, NCT02057341, and NCT02351856.
Collapse
Affiliation(s)
- Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, IDIPHISA, Universidad Francisco de Vitoria and Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P.)
| | - Jose Fernando Rodriguez Palomares
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Hospital Vall Hebrón, Universitat Autònoma de Barcelona, Spain (J.F.R.P.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.F.R.P.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina, University of Trieste, Italy (G.S.)
| | | | - Neal K. Lakdawala
- Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (N.K.L., C.A.M.R.)
| | - Robert L. Gottlieb
- Baylor Scott & White Research Institute, Dallas, TX (R.L.G.)
- Baylor University Medical Center, Dallas, TX (R.L.G.)
- Baylor Scott & White Heart and Vascular Hospital, Dallas, TX (R.L.G.)
| | | | | | | | - Huihua Li
- Pfizer Inc, Collegeville, PA (H.L., F.S.A.)
| | | | - Daniel P. Judge
- Medical University of South Carolina, Cardiovascular Genetics, Charleston (D.P.J.)
| | - Calum A. MacRae
- Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (N.K.L., C.A.M.R.)
| |
Collapse
|
5
|
Anderson CL, Brown KA, North RJ, Walters JK, Kaska ST, Wolff MR, Kamp TJ, Ge Y, Eckhardt LL. Global Proteomic Analysis Reveals Alterations in Differentially Expressed Proteins between Cardiopathic Lamin A/C Mutations. J Proteome Res 2024; 23:1970-1982. [PMID: 38718259 PMCID: PMC11218822 DOI: 10.1021/acs.jproteome.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.
Collapse
Affiliation(s)
- Corey L. Anderson
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Ryan J. North
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Janay K. Walters
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sara T. Kaska
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mathew R. Wolff
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J. Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
6
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
7
|
Matusik PT, Bijak P, Kaźnica-Wiatr M, Karpiński M, Matusik PS, Maziarz A, Podolec P, Lelakowski J. Twelve-Lead ECG, Holter Monitoring Parameters, and Genetic Testing in Brugada Syndrome: Insights from Analysis of Multigenerational Family with a History of Sudden Cardiac Arrest during Physical Activity. J Clin Med 2023; 12:6581. [PMID: 37892719 PMCID: PMC10607905 DOI: 10.3390/jcm12206581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Brugada syndrome (BrS) is an arrhythmogenic disorder increasing the risk of syncopal episodes and sudden cardiac death. BrS usually runs through families with reduced penetrance and variable expression. We analyzed the multigenerational family of a patient who died after sudden cardiac arrest with post-mortem diagnosis of BrS. We analyzed clinical history, comprehensive arrhythmic risk, genetic findings, and additional tests, including electrocardiogram (ECG), detailed 24-hour Holter ECG results, and standard echocardiography findings, and followed up the patients in the ambulatory clinic. We analyzed a pedigree of 33 members of four generations of the family (19 male and 14 female patients). In this family, we identified 7 patients with BrS (median Modified Shanghai Score and Sieira model: 4.5 (4-6) and 1 (0-4) points, respectively), including both parents of the deceased patient, and 8 relatives with negative sodium channel blocker drug challenge test. Genetic testing revealed a novel mutation in sodium voltage-gated channel alpha subunit 5 (SCN5A) c.941A>G, (p.Tyr314Cys) inherited from the father of the proband. Patients with BrS were characterized by longer P-wave duration (120 (102-155) vs. 92.5 (88-110) ms, p = 0.013) and longer PR intervals (211.3 ±26.3 vs. 161.6 ± 18.9 ms, p = 0.001), along with more frequent positive aVR sign, but did not differ in terms of QRS duration or T-wave characteristics in resting ECGs. BrS patients were characterized by lower mean, minimal, and maximal (for all p ≤ 0.01) heart rates obtained from Holter ECG monitoring, while there was no difference in arrhythmias among investigated patients. Moreover, visual diurnal variability of ST segment changes and fragmented QRS complexes were observed in patients with BrS in Holter ECG monitoring. There were no major arrhythmic events during median follow-up of 68.7 months of alive BrS patients. These results suggest ECG features which may be associated with a diagnosis of BrS and indicate a novel SCN5A variant in BrS patients. Twelve-lead Holter ECG monitoring, with modified precordial leads placement, may be useful in BrS diagnostics and risk stratification in personalized medicine.
Collapse
Affiliation(s)
- Paweł T. Matusik
- Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Piotr Bijak
- Cardiology Outpatient Clinic, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Magdalena Kaźnica-Wiatr
- Department of Cardiac and Vascular Diseases, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Marek Karpiński
- Genetic Counselling Outpatient Clinic, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Patrycja S. Matusik
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
- Chair of Radiology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Andrzej Maziarz
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Piotr Podolec
- Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Cardiac and Vascular Diseases, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Jacek Lelakowski
- Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
8
|
郑 奎, 武 菲, 娄 美, 王 莹, 李 博, 郝 京, 王 永, 张 英, 齐 焕. [Clinical and genetic characteristics of children with primary dilated cardiomyopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:726-731. [PMID: 37529955 PMCID: PMC10414173 DOI: 10.7499/j.issn.1008-8830.2303077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To study the genetic characteristics, clinical characteristics, and prognosis of children with primary dilated cardiomyopathy (DCM). METHODS A retrospective analysis was performed on the medical data of 44 children who were diagnosed with DCM in Hebei Children's Hospital from July 2018 to February 2023. According to the genetic testing results, they were divided into two groups: gene mutation-positive group (n=17) and gene mutation-negative group (n=27). The two groups were compared in terms of clinical data at initial diagnosis and follow-up data. RESULTS Among the 44 children with DCM, there were 21 boys (48%) and 23 girls (52%). Respiratory symptoms including cough and shortness of breath were the most common symptom at initial diagnosis (34%, 15/44). The detection rate of gene mutations was 39% (17/44). There were no significant differences between the two groups in clinical characteristics, proportion of children with cardiac function grade Ⅲ or Ⅳ, brain natriuretic peptide levels, left ventricular ejection fraction, and left ventricular fractional shortening at initial diagnosis (P>0.05). The median follow-up time was 23 months, and 9 children (20%) died, including 8 children from the gene mutation-positive group, among whom 3 had TTN gene mutation, 2 had LMNA gene mutation, 2 had TAZ gene mutation, and 1 had ATAD3A gene mutation. The gene mutation-positive group had a significantly higher mortality rate than the gene mutation-negative group (P<0.05). CONCLUSIONS There is no correlation between the severity of DCM at initial diagnosis and gene mutations in children. However, children with gene mutations may have a poorer prognosis.
Collapse
Affiliation(s)
- 奎 郑
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 菲 武
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 美娜 娄
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 莹雪 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 博 李
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 京霞 郝
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 永丽 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 英谦 张
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 焕军 齐
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| |
Collapse
|
9
|
Guevara-Ramírez P, Cadena-Ullauri S, Ibarra-Castillo R, Laso-Bayas JL, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Doménech N, Ibarra-Rodríguez AA, Zambrano AK. Genomic analysis of a novel pathogenic variant in the gene LMNA associated with cardiac laminopathies found in Ecuadorian siblings: A case report. Front Cardiovasc Med 2023; 10:1141083. [PMID: 37025686 PMCID: PMC10070725 DOI: 10.3389/fcvm.2023.1141083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Cardiac laminopathies are caused by mutations in the LMNA gene and include a wide range of clinical manifestations involving electrical and mechanical changes in cardiomyocytes. In Ecuador, cardiovascular diseases were the primary cause of death in 2019, accounting for 26.5% of total deaths. Cardiac laminopathy-associated mutations involve genes coding for structural proteins with functions related to heart development and physiology. Family description Two Ecuadorian siblings, self-identified as mestizos, were diagnosed with cardiac laminopathies and suffered embolic strokes. Moreover, by performing Next-Generation Sequencing, a pathogenic variant (NM_170707.3:c.1526del) was found in the gene LMNA. Discussion and conclusion Currently, genetic tests are an essential step for disease genetic counseling, including cardiovascular disease diagnosis. Identification of a genetic cause that may explain the risk of cardiac laminopathies in a family can help the post-test counseling and recommendations from the cardiologist. In the present report, a pathogenic variant ((NM_170707.3:c.1526del) has been identified in two Ecuadorian siblings with cardiac laminopathies. The LMNA gene codes for A-type laminar proteins that are associated with gene transcription regulation. Mutations in the LMNA gene cause laminopathies, disorders with diverse phenotypic manifestations. Moreover, understanding the molecular biology of the disease-causing mutations is essential in deciding the correct type of treatment.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rita Ibarra-Castillo
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - José Luis Laso-Bayas
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nieves Doménech
- Instituto de Investigación Biomédica de A Coruña (INIBIC)-CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad da Coruña (UDC), La Coruña-Spain, Spain
| | | | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Correspondence: Ana Karina Zambrano
| |
Collapse
|
10
|
Genetic Screening of a Large Panel of Genes Associated with Cardiac Disease in a Spanish Heart Transplanted Cohort. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we performed a next generation sequencing of 210 genes in 140 patients with cardiac failure requiring a heart transplantation. We identified a total of 48 candidate variants in 47 patients. Forty-three patients (90%) presented a single variant, and fourpatients (10%) were carriers of two variants. After refining the classification, we identified a pathogenic or likely pathogenic variant in 13 patients (10% of our cohort). In 34 additional cases (25%) the variants were classified as of unknown significance (VUS). In reference to the cause of cardiac failure in the 13 carriers of pathogenic variants, 5 were of dilated non-ischemic cause, 4 hypertrophic and 1 restrictive cardiomyopathy. In the ischemic cases (n = 3) no family history of cardiac disease was recorded, while nineof the non-ischemic had other relatives who were also diagnosed. In conclusion, the NGS of a cardiac transplanted cohort identified a definite or very likely genetic cause in 10% of the cases. Most of them had a family history of cardiac disease, and were thus previously studied as part of a routine screening by a genetic counselor. Pathogenic variants in cases without a family history of cardiac disease were mainly of ischemic origin.
Collapse
|
11
|
Henein MY, Cameli M, Pastore MC, Mandoli GE. COVID-19 Severity and Cardiovascular Disease: An Inseparable Link. J Clin Med 2022; 11:jcm11030479. [PMID: 35159931 PMCID: PMC8836392 DOI: 10.3390/jcm11030479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Michael Y. Henein
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87 Umea, Sweden
- Molecular and Clinic Research Institute, St. George London & Brunel Universities, London SW17 0QT, UK
- Correspondence:
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (M.C.); (M.C.P.); (G.E.M.)
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (M.C.); (M.C.P.); (G.E.M.)
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (M.C.); (M.C.P.); (G.E.M.)
| |
Collapse
|