1
|
Sadasivam P, Hartimath SV, Khanapur S, Ramasamy B, Cheng P, Feng CZ, Green D, Goggi JL, Robins EG, Yan R. Novel [ 18F]FPG-interleukin-2 conjugate for monitoring immune checkpoint therapy with positron emission tomography. Biomed Pharmacother 2024; 180:117617. [PMID: 39471651 DOI: 10.1016/j.biopha.2024.117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
18F-interleukin-2 based PET imaging of activated T cells serves as a potential tool for non-invasive response prediction, treatment evaluation, and patient stratification in cancer immune checkpoint therapy. Herein, we report the radiolabelling of interleukin-2 (IL-2) with a novel arginine selective bioconjugation reagent, 4-[18F]fluorophenylglyoxal ([18F]FPG). Good non-decay corrected bioconjugation efficiencies of 29 ± 4 % (n = 5) were obtained for the [18F]FPG-IL-2. [18F]FPG-IL-2 uptake by the phytohemagglutinin-activated Jurkat cells (50.5 ± 1.2 %, n = 3) was significantly higher compared to the non-activated Jurkat cells (12.9 ± 1.1 %, n = 3). The [18F]FPG-IL-2 uptake was blocked by the pre-treatment of activated Jurkat cells with excess native IL-2 (22.3 ± 2.2 %, n = 3). Dynamic PET imaging and ex vivo biodistribution study of [18F]FPG-IL-2 in healthy and CT26 tumour bearing mice demonstrated hepatobiliary and renal clearance with minimal uptake in other organs and CT26 tumours. [18F]FPG-IL-2 PET imaging was applied to non-invasively monitor immune checkpoint therapy in CT26 tumour bearing mice, treated with IgG (control), ⍺PD-1 (monotherapy), and ⍺PD-1+⍺CTLA-4 (combination therapy). Significant uptake was observed in the spleens and tumours of the mice in the combination therapy group, which was associated with increased cytotoxic CD8+ T-cell infiltration and reduced tumour volumes. [18F]FPG-IL-2 based PET imaging has the potential to monitor immune checkpoint therapy.
Collapse
Affiliation(s)
- Pragalath Sadasivam
- School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, King's College London, UK; Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Minerva Imaging ApS, Lyshøjvej 21, Ølstykke 3650, Denmark
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Shivashankar Khanapur
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Boominathan Ramasamy
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Peter Cheng
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Chin Zan Feng
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - David Green
- Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Minerva Imaging ApS, Lyshøjvej 21, Ølstykke 3650, Denmark
| | - Edward G Robins
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Molecular Imaging and Therapy Research Unit, South Australian Health, and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace & George Street, Adelaide, SA 5000, Australia
| | - Ran Yan
- School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, King's College London, UK.
| |
Collapse
|
2
|
Yee J, Rosendahl C, Aoude LG. The role of artificial intelligence and convolutional neural networks in the management of melanoma: a clinical, pathological, and radiological perspective. Melanoma Res 2024; 34:96-104. [PMID: 38141179 PMCID: PMC10906187 DOI: 10.1097/cmr.0000000000000951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Clinical dermatoscopy and pathological slide assessment are essential in the diagnosis and management of patients with cutaneous melanoma. For those presenting with stage IIC disease and beyond, radiological investigations are often considered. The dermatoscopic, whole slide and radiological images used during clinical care are often stored digitally, enabling artificial intelligence (AI) and convolutional neural networks (CNN) to learn, analyse and contribute to the clinical decision-making. A keyword search of the Medline database was performed to assess the progression, capabilities and limitations of AI and CNN and its use in diagnosis and management of cutaneous melanoma. Full-text articles were reviewed if they related to dermatoscopy, pathological slide assessment or radiology. Through analysis of 95 studies, we demonstrate that diagnostic accuracy of AI/CNN can be superior (or at least equal) to clinicians. However, variability in image acquisition, pre-processing, segmentation, and feature extraction remains challenging. With current technological abilities, AI/CNN and clinicians synergistically working together are better than one another in all subspecialty domains relating to cutaneous melanoma. AI has the potential to enhance the diagnostic capabilities of junior dermatology trainees, primary care skin cancer clinicians and general practitioners. For experienced clinicians, AI provides a cost-efficient second opinion. From a pathological and radiological perspective, CNN has the potential to improve workflow efficiency, allowing clinicians to achieve more in a finite amount of time. Until the challenges of AI/CNN are reliably met, however, they can only remain an adjunct to clinical decision-making.
Collapse
Affiliation(s)
- Joshua Yee
- Faculty of Medicine, University of Queensland, St Lucia
| | - Cliff Rosendahl
- Primary Care Clinical Unit, Medical School, The University of Queensland, Herston
| | - Lauren G. Aoude
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
3
|
Amrane K, Le Meur C, Thuillier P, Dzuko Kamga J, Alemany P, Chauvelot F, Niel C, Bellange A, Abgral R. Case Report: Long-term metabolic response of metastatic uveal melanoma to pembrolizumab on FDG-PET/CT despite a serial pseudoprogressions phenomenon. Front Immunol 2023; 14:1243208. [PMID: 38111583 PMCID: PMC10725954 DOI: 10.3389/fimmu.2023.1243208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Uveal melanoma (UV) is a rare and aggressive melanoma with poor 1-year survival. up to 50% of UV patients develop metastases, mainly to the liver. Here, the authors present a 2-deoxy-2-[18F] fluoro-D-glucose positron emission tomography (18F-FDG-PET) study of a very rare case of secondarily metastatic UV in an 81-year-old Caucasian with a dramatic response to pembrolizumab associated with serial pseudogression. 18F-FDG-PET associated with clinical status and peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) were performed to guide therapeutic strategy due to an atypical pseudoprogression phenomenon.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Centre Hospitalier des Pays de Morlaix, Morlaix, France
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Philippe Thuillier
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
- Department of Endocrinology, University Hospital of Brest, Brest, France
| | | | - Pierre Alemany
- Department of Pathology, Ouestpathology Brest, Brest, France
| | - Frederic Chauvelot
- Department of Onco-pharmacy, Centre Hospitalier des Pays de Morlaix, Morlaix, France
| | - Clémence Niel
- Department of Oncology, Centre Hospitalier des Pays de Morlaix, Morlaix, France
| | - Alex Bellange
- Department of Oncology, Centre Hospitalier des Pays de Morlaix, Morlaix, France
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
- Unité Mixte de Recherche (UMR) Inserm 1304 Groupe d'étude de la thrombose de Bretagne-Occidentale (GETBO), Institut Federatif de Recherche (IFR) 148, University of Western Brittany, Brest, France
| |
Collapse
|
4
|
Zhou R, Tong F, Zhang Y, Zhang R, Bin Y, Zhang S, Yang N, Dong X. Genomic alterations associated with pseudoprogression and hyperprogressive disease during anti-PD1 treatment for advanced non-small-cell lung cancer. Front Oncol 2023; 13:1231094. [PMID: 38023206 PMCID: PMC10667039 DOI: 10.3389/fonc.2023.1231094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction This study aimed to elucidate the relationship between dynamic genomic mutation alteration and pseudoprogression (PsPD)/hyperprogressive disease (HPD) in immunotherapy-treated advanced non-small-cell lung cancer (NSCLC), to provide clinical evidence for identifying and distinguishing between PsPD and HPD. Method Patients with advanced NSCLC who were treated with anti-PD1 were enrolled. Whole blood was collected at baseline and post image progression. Serum was separated and sequenced using 425-panel next-generation sequencing analysis (NGS). Results NGS revealed that not only single gene mutations were associated with PsPD/HPD before treatment, dynamic monitoring of the whole-blood genome mutation spectrum also varied greatly. Mutational burden, allele frequency%, and relative circulating tumor DNA abundance indicated that the fold change after image progression was much higher in the HPD group. Discussion The gene mutation profiles of PsPD and HPD not only differed before treatment, but higher genome mutation spectrum post image progression indicated true disease progression in patients with HPD. This suggests that dynamic whole-genome mutation profile monitoring as NGS can distinguish PsPD from HPD more effectively than single gene detection, providing a novel method for guiding clinical immune treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruigang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yawen Bin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Prendergast CM, Lopci E, Seban RD, De Jong D, Ammari S, Aneja S, Lévy A, Sajan A, Salvatore MM, Cappacione KM, Schwartz LH, Deutsch E, Dercle L. Integrating [ 18F]-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography with Radiation Therapy and Immunomodulation in Precision Therapy for Solid Tumors. Cancers (Basel) 2023; 15:5179. [PMID: 37958353 PMCID: PMC10648321 DOI: 10.3390/cancers15215179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
[18F]-FDG positron emission tomography with computed tomography (PET/CT) imaging is widely used to enhance the quality of care in patients diagnosed with cancer. Furthermore, it holds the potential to offer insight into the synergic effect of combining radiation therapy (RT) with immuno-oncological (IO) agents. This is achieved by evaluating treatment responses both at the RT and distant tumor sites, thereby encompassing the phenomenon known as the abscopal effect. In this context, PET/CT can play an important role in establishing timelines for RT/IO administration and monitoring responses, including novel patterns such as hyperprogression, oligoprogression, and pseudoprogression, as well as immune-related adverse events. In this commentary, we explore the incremental value of PET/CT to enhance the combination of RT with IO in precision therapy for solid tumors, by offering supplementary insights to recently released joint guidelines.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Inserm, Institut Curie, 91401 Orsay, France
| | - Dorine De Jong
- RefleXion Medical, Inc., Hayward, CA 94545, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samy Ammari
- Department of Medical Imaging, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sanjay Aneja
- Department of Radiation Oncology, Smilow Cancer Hospital, Yale School of Medicine, New Haven, CT 06519, USA
| | - Antonin Lévy
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Abin Sajan
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Mary M. Salvatore
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Kathleen M. Cappacione
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Lawrence H. Schwartz
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Laurent Dercle
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| |
Collapse
|
6
|
Beaumont H, Iannessi A. Can we predict discordant RECIST 1.1 evaluations in double read clinical trials? Front Oncol 2023; 13:1239570. [PMID: 37869080 PMCID: PMC10585359 DOI: 10.3389/fonc.2023.1239570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background In lung clinical trials with imaging, blinded independent central review with double reads is recommended to reduce evaluation bias and the Response Evaluation Criteria In Solid Tumor (RECIST) is still widely used. We retrospectively analyzed the inter-reader discrepancies rate over time, the risk factors for discrepancies related to baseline evaluations, and the potential of machine learning to predict inter-reader discrepancies. Materials and methods We retrospectively analyzed five BICR clinical trials for patients on immunotherapy or targeted therapy for lung cancer. Double reads of 1724 patients involving 17 radiologists were performed using RECIST 1.1. We evaluated the rate of discrepancies over time according to four endpoints: progressive disease declared (PDD), date of progressive disease (DOPD), best overall response (BOR), and date of the first response (DOFR). Risk factors associated with discrepancies were analyzed, two predictive models were evaluated. Results At the end of trials, the discrepancy rates between trials were not different. On average, the discrepancy rates were 21.0%, 41.0%, 28.8%, and 48.8% for PDD, DOPD, BOR, and DOFR, respectively. Over time, the discrepancy rate was higher for DOFR than DOPD, and the rates increased as the trial progressed, even after accrual was completed. It was rare for readers to not find any disease, for less than 7% of patients, at least one reader selected non-measurable disease only (NTL). Often the readers selected some of their target lesions (TLs) and NTLs in different organs, with ranges of 36.0-57.9% and 60.5-73.5% of patients, respectively. Rarely (4-8.1%) two readers selected all their TLs in different locations. Significant risk factors were different depending on the endpoint and the trial being considered. Prediction had a poor performance but the positive predictive value was higher than 80%. The best classification was obtained with BOR. Conclusion Predicting discordance rates necessitates having knowledge of patient accrual, patient survival, and the probability of discordances over time. In lung cancer trials, although risk factors for inter-reader discrepancies are known, they are weakly significant, the ability to predict discrepancies from baseline data is limited. To boost prediction accuracy, it would be necessary to enhance baseline-derived features or create new ones, considering other risk factors and looking into optimal reader associations.
Collapse
|
7
|
Ayati N, Jamshidi-Araghi Z, Hoellwerth M, Schweighofer-Zwink G, Hitzl W, Koelblinger P, Pirich C, Beheshti M. Predictive value and accuracy of [ 18F]FDG PET/CT modified response criteria for checkpoint immunotherapy in patients with advanced melanoma. Eur J Nucl Med Mol Imaging 2023; 50:2715-2726. [PMID: 37140669 PMCID: PMC10317870 DOI: 10.1007/s00259-023-06247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are widely used in metastatic melanoma and dramatically alter the treatment of these patients. Given the high cost and potential toxicity, a reliable method for evaluating treatment response is needed. In this study, we assessed tumor response in patients with metastatic melanoma treated with ICIs using three modified response criteria: PET Response Evaluation Criteria for Immunotherapy (PERCIMT), PET Response Criteria in Solid Tumors for up to Five Lesions (PERCIST5), and immunotherapy-modified PET Response Criteria in Solid Tumors for up to Five Lesions (imPERCIST5). METHODS Ninety-one patients with non-resectable stage IV metastatic melanoma who received ICIs were retrospectively enrolled in this study. Each patient had two [18F]FDG PET/CT scans performed before and after ICI therapy. Responses at the follow-up scan were evaluated according to PERCIMT, PERCIST5, and imPERCIST5 criteria. Patients were classified into four groups: complete metabolic response (CMR), partial metabolic response (PMR), progressive metabolic disease (PMD), and stable metabolic disease (SMD). To assess the "disease control rate," two groups have been defined based on each criterion: patients with CMR, PMR, and SMD as "disease-controlled group (i.e., responders)" and PMD as the "uncontrolled-disease group (i.e., non-responders)". The correspondence between metabolic tumor response defined by these criteria and clinical outcome was assessed and compared. RESULTS The response and the disease control rates were 40.7% and 71.4%, 41.8% and 50.5%, and 54.9% and 74.7% based on the PERCIMT, PERCIST5, and imPERCIST5 criteria, respectively. PERCIMT and imPERCIST5 showed significantly different disease control rates from that of PERCIST5 (P < 0.001), whereas it was not significant between PERCIMT and imPERCIST5. Overall survival was significantly longer in the metabolic responder groups than in the non-responder groups based on PERCIMT and PERCIST5 criteria (PERCIMT: 2.48 versus 1.47 years, P = 0.003; PERCIST5: 2.57 versus 1.81 years. P = 0.017). However, according to imPERCIST5 criterion, this difference was not observed (P = 0.12). CONCLUSION Although the appearance of new lesions can be secondary to an inflammatory response to ICIs and indicative of pseudoprogression, given the higher rate of true progression, the appearance of new lesions should be interpreted deliberately. Of the three assessed modified criteria, PERCIMT appear to provide more reliable metabolic response assessment that correlates strongly with overall patient survival.
Collapse
Affiliation(s)
- Narjess Ayati
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zahra Jamshidi-Araghi
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
- Department of Nuclear Medicine, Shahid Rajaie Cardiovascular, Medical & Research Center, Tehran, Iran
| | - Magdalena Hoellwerth
- Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Gregor Schweighofer-Zwink
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Wolfgang Hitzl
- Biostatistics and Publication of Clinical Trial Studies, Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology & Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Peter Koelblinger
- Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| |
Collapse
|
8
|
Tutino F, Giovannini E, Chiola S, Giovacchini G, Ciarmiello A. Assessment of Response to Immunotherapy in Patients with Hodgkin Lymphoma: Towards Quantifying Changes in Tumor Burden Using FDG-PET/CT. J Clin Med 2023; 12:jcm12103498. [PMID: 37240602 DOI: 10.3390/jcm12103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune checkpoint inhibitors are currently the standard of care for many advanced solid tumors, and they have been recently approved for the treatment of relapsed/refractory Hodgkin lymphoma and primary mediastinal B cell lymphoma. Assessments of the response to immunotherapy may be complicated by the occurrence of the flare/pseudoprogression phenomenon, consisting of initial tumor enlargement and even the appearance of new lesions, followed by a response, which may initially be indistinguishable from true progression. There have been efforts to characterize and capture the new patterns of response observed during immunotherapy, namely, pseudoprogression and delayed response, and several immune-related response criteria have been proposed. Confirming progression on a subsequent scan and measuring the total tumor burden are both common in immune-related criteria. Due to the peculiarity of hematologic malignancies, lymphoma-specific immune-related criteria have been developed (LYRIC), and they have been evaluated in research studies in comparison to the Lugano Classification. In this review work, we illustrate the evolution of the response criteria in lymphomas from the first CT-based criteria to the development of the PET-based Lugano Classification, further refined to take into account the flare phenomenon encountered during immunotherapy. We also describe the additional contribution of PET-derived volumetric parameters to the interpretation of responses during immunotherapy.
Collapse
Affiliation(s)
- Francesca Tutino
- Nuclear Medicine Unit, Ospedale Civile Sant'Andrea, Via Vittorio Veneto 170, 19124 La Spezia, Italy
| | - Elisabetta Giovannini
- Nuclear Medicine Unit, Ospedale Civile Sant'Andrea, Via Vittorio Veneto 170, 19124 La Spezia, Italy
| | - Silvia Chiola
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giampiero Giovacchini
- Nuclear Medicine Unit, Ospedale Civile Sant'Andrea, Via Vittorio Veneto 170, 19124 La Spezia, Italy
| | - Andrea Ciarmiello
- Nuclear Medicine Unit, Ospedale Civile Sant'Andrea, Via Vittorio Veneto 170, 19124 La Spezia, Italy
| |
Collapse
|
9
|
Mangas Losada M, Romero Robles L, Mendoza Melero A, García Megías I, Villanueva Torres A, Garrastachu Zumarán P, Boulvard Chollet X, Lopci E, Ramírez Lasanta R, Delgado Bolton RC. [ 18F]FDG PET/CT in the Evaluation of Melanoma Patients Treated with Immunotherapy. Diagnostics (Basel) 2023; 13:978. [PMID: 36900122 PMCID: PMC10000458 DOI: 10.3390/diagnostics13050978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Immunotherapy is based on manipulation of the immune system in order to act against tumour cells, with growing evidence especially in melanoma patients. The challenges faced by this new therapeutic tool are (i) finding valid evaluation criteria for response assessment; (ii) knowing and distinguishing between "atypical" response patterns; (iii) using PET biomarkers as predictive and response evaluation parameters and (iv) diagnosis and management of immunorelated adverse effects. This review is focused on melanoma patients analysing (a) the role of [18F]FDG PET/CT in the mentioned challenges; (b) the evidence of its efficacy. For this purpose, we performed a review of the literature, including original and review articles. In summary, although there are no clearly established or globally accepted criteria, modified response criteria are potentially appropriate for evaluation of immunotherapy benefit. In this context, [18F]FDG PET/CT biomarkers appear to be promising parameters in prediction and assessment of response to immunotherapy. Moreover, immunorelated adverse effects are recognized as predictors of early response to immunotherapy and may be associated with better prognosis and clinical benefit.
Collapse
Affiliation(s)
- María Mangas Losada
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Leonardo Romero Robles
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alejandro Mendoza Melero
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Irene García Megías
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Amós Villanueva Torres
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Puy Garrastachu Zumarán
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Xavier Boulvard Chollet
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Egesta Lopci
- Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Rafael Ramírez Lasanta
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
10
|
Lopci E, Castello A, Filippi L. Novelties from the Joint EANM/SNMMI/ANZSNM Guidelines on Immunotherapy. Cancer Biother Radiopharm 2023; 38:211-215. [PMID: 36730788 DOI: 10.1089/cbr.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the implementation of immunotherapy with checkpoint inhibitors has determined a major change in the management of oncological patients. The challenges associated to the new therapeutic regimen have promoted adapted criteria for response assessment to interpret imaging findings and atypical patterns of response. Parallel to the new morphological criteria, also 18fluoro-deoxyglucose positron emission/computed tomography imaging has required novel approaches and specific guidelines on how to perform, interpret, and report the scan in patients with solid tumors under immune checkpoint inhibitors therapy. A summary of the novelties related to the new joint international European Association of Nuclear Medicine (EANM)/Society of Nuclear Medicine and Molecular Imaging (SNMMI)/Australian and New Zealand Society of Nuclear Medicine (ANZSNM) guidelines on immunotherapy is provided herein to elucidate most critical aspects in image interpretation.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
11
|
FDG-PET findings associated with various medical procedures and treatments. Jpn J Radiol 2022; 41:459-476. [PMID: 36575286 PMCID: PMC9794480 DOI: 10.1007/s11604-022-01376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-established modality with high sensitivity for the diagnosis and staging of oncologic patients. FDG is taken up by the glucose transporter of the cell membrane and becomes trapped within the cell. In addition to malignant neoplasms, active inflammatory lesions and some kinds of benign tumors also accumulate FDG. Moreover, the degree of uptake into normal organs and tissues depends on various physiological conditions, which is affected by various medical procedures, treatments, and drugs. To avoid misleading interpretations, it is important to recognize possible situations of unexpected abnormal accumulation that mimic tumor lesions. In this review, we present various FDG findings associated with surgical or medical procedures and treatments. Some findings reflect the expected physiological reaction to treatment, and some show inflammation due to prior procedures. Occasionally, FDG-PET visualizes other disorders that are unrelated to the malignancy, which may be associated with the adverse effects of certain drugs that the patient is taking. Careful review of medical records and detailed interviews of patients are thus necessary.
Collapse
|
12
|
Lopci E, Aide N, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber WA, Van den Abbeele AD, Wahl RL, Scott AM, Pandit-Taskar N, Hicks RJ. Perspectives on joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards for [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors. Cancer Imaging 2022; 22:73. [PMID: 36539908 PMCID: PMC9769012 DOI: 10.1186/s40644-022-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Response assessment in the context of immunomodulatory treatments represents a major challenge for the medical imaging community and requires a multidisciplinary approach with involvement of oncologists, radiologists, and nuclear medicine specialists. There is evolving evidence that [18F]FDG PET/CT is a useful diagnostic modality for this purpose. The clinical indications for, and the principal aspects of its standardization in this context have been detailed in the recently published "Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0". These recommendations arose from a fruitful collaboration between international nuclear medicine societies and experts in cancer treatment. In this perspective, the key elements of the initiative are reported, summarizing the core aspects of the guidelines for radiologists and nuclear medicine physicians. Beyond the previous guidelines, this perspective adds further commentary on how this technology can advance development of novel therapeutic approaches and guide management of individual patients.
Collapse
Affiliation(s)
- E. Lopci
- grid.417728.f0000 0004 1756 8807Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI Italy
| | - N. Aide
- grid.411149.80000 0004 0472 0160Nuclear Medicine Department, University Hospital, Caen, France ,grid.460771.30000 0004 1785 9671INSERM ANTICIPE, Normandie University, Caen, France
| | - A. Dimitrakopoulou-Strauss
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Germany
| | - L. Dercle
- grid.239585.00000 0001 2285 2675Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY USA
| | - A. Iravani
- grid.34477.330000000122986657Department of Radiology, The University of Washington, Seattle, USA ,grid.270240.30000 0001 2180 1622Fred Hutchinson Cancer Center, Seattle, USA
| | - R. D. Seban
- grid.418596.70000 0004 0639 6384Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France ,Laboratoire d’Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401 Orsay, France
| | - C. Sachpekidis
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Germany
| | - O. Humbert
- grid.460782.f0000 0004 4910 6551Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d’Azur, Nice, France ,grid.460782.f0000 0004 4910 6551TIRO-UMR E 4320, Université Côte d’Azur, Nice, France
| | - O. Gheysens
- grid.48769.340000 0004 0461 6320Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A. W. J. M. Glaudemans
- grid.4494.d0000 0000 9558 4598Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W. A. Weber
- grid.6936.a0000000123222966Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - A. D. Van den Abbeele
- grid.38142.3c000000041936754XDepartment of Imaging, Dana-Farber Cancer Institute and Department of Radiology, Mass General Brigham Hospitals, Harvard Medical School, Boston, MA USA
| | - R. L. Wahl
- grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - A. M. Scott
- grid.410678.c0000 0000 9374 3516Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, VIC 3084 Australia ,grid.482637.cOlivia Newton-John Cancer Research Institute, Heidelberg, Australia ,grid.1008.90000 0001 2179 088XFaculty of Medicine, University of Melbourne, Melbourne, Australia ,grid.1018.80000 0001 2342 0938School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N. Pandit-Taskar
- grid.51462.340000 0001 2171 9952Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medical College, New York, NY 10065 USA
| | - R. J. Hicks
- grid.1008.90000 0001 2179 088XThe Department of Medicine, St Vincent’s Medical School, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Litière S, Bogaerts J. Imaging endpoints for clinical trial use: a RECIST perspective. J Immunother Cancer 2022; 10:jitc-2022-005092. [PMID: 36424032 PMCID: PMC9693866 DOI: 10.1136/jitc-2022-005092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Twenty years after its initial introduction, Response Evaluation Criteria in Solid Tumors (RECIST) remains today a unique standardized tool allowing uniform objective evaluation of response in solid tumors in clinical trials across different treatment indications. Several attempts have been made to update or replace RECIST, but none have realized the general traction or uptake seen with RECIST. This communication provides an overview of some challenges faced by RECIST in the rapidly changing oncology landscape, including the incorporation of PET with 18F-fluorodeoxyglucose tracer as a tool for response assessment and the validation of criteria for use in trials involving immunotherapeutics. The latter has mainly been slow due to lack of data sharing. Work is ongoing to try to address this.We also aim to share our view as statistician representatives on the RECIST Working Group on what would be needed to validate new imaging endpoints for clinical trial use, with a specific focus on RECIST. Whether this could lead to an update of RECIST or replace RECIST altogether, depends on the changes being proposed. The ultimate goal remains to have a well defined, repeatable, confirmable and objective standard as provided by RECIST today.
Collapse
Affiliation(s)
- Saskia Litière
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| |
Collapse
|
14
|
Pellin MA. The Use of Oncept Melanoma Vaccine in Veterinary Patients: A Review of the Literature. Vet Sci 2022; 9:597. [PMID: 36356074 PMCID: PMC9693055 DOI: 10.3390/vetsci9110597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 04/28/2024] Open
Abstract
The Oncept melanoma vaccine is xenogeneic DNA vaccine targeting tyrosinase. It is USDA approved for treatment of stage II to III canine oral melanoma and is also used off-label for melanomas arising in other locations and in other species. While the vaccine appears safe, the published data is mixed as to whether it provides a survival benefit, and the use of the vaccine is somewhat controversial in the veterinary oncology community. In this paper, the published literature describing the use of Oncept is reviewed and evaluated.
Collapse
Affiliation(s)
- MacKenzie A Pellin
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
15
|
Sachpekidis C, Hassel JC, Dimitrakopoulou-Strauss A. Adverse effects under immune checkpoint inhibitors on [18F]FDG PET/CT imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:245-254. [PMID: 35612369 DOI: 10.23736/s1824-4785.22.03453-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite their undisputed contribution to the management of various tumors and the prolongation of patient survival, immune checkpoint inhibitors (ICIs) exert their effect at the cost of toxicity. In the context of the activation of the host immune system triggered by ICIs, collateral, inflammatory side effects, commonly addressed as immune-related adverse events (irAEs) often occur. Early detection of irAEs can be critical for adequate decisions on patient management that may subsequently improve patient outcome. Moreover, the emergence of irAEs has been linked with the antitumor effect elicited by ICIs, thus, their identification may potentially provide prognostic information. Although the diagnosis of irAEs is mainly clinical, some adverse events may be asymptomatic and only diagnosed by imaging modalities. At the same time, radiological signs of irAEs are not necessarily associated with clinical symptoms, however, clinicians should be alerted to their presence. Among imaging modalities [18F]FDG PET/CT has shown satisfying efficiency in response assessment and monitoring of ICIs' treatment, especially in patients suffering from metastatic melanoma and lung cancer. In this context, [18F]FDG PET/CT may also be a valuable method for surveillance of irAEs during immunotherapy. This article aims to review the most common adverse events observed on [18F]FDG PET/CT under immunotherapy and summarize potential results linking PET signs of irAEs with response assessment to ICIs.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany -
| | - Jessica C Hassel
- Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University Hospital of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
16
|
Emerging Role of FAPI PET Imaging for the Assessment of Benign Bone and Joint Diseases. J Clin Med 2022; 11:jcm11154514. [PMID: 35956129 PMCID: PMC9369955 DOI: 10.3390/jcm11154514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
|
17
|
Lopci E. Meditating on Cancer Management at the Time of Immunotherapy. J Clin Med 2022; 11:jcm11113025. [PMID: 35683412 PMCID: PMC9181255 DOI: 10.3390/jcm11113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, IRCCS-Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
18
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
19
|
The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J Clin Med 2022; 11:jcm11061740. [PMID: 35330068 PMCID: PMC8948743 DOI: 10.3390/jcm11061740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Abstract Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an “ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
Collapse
|
20
|
Lopci E, Morbelli S. Advances in Lung Cancer Imaging and Therapy. Cancers (Basel) 2021; 14:cancers14010058. [PMID: 35008219 PMCID: PMC8750401 DOI: 10.3390/cancers14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
This series of eight papers (five original articles, two reviews and one meta-analysis) is presented by international leaders covering various aspects of lung cancer management, starting with diagnostic imaging and analyzing the novel perspectives of therapy [...]
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence:
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Nuclear Medicine, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Department of Health Sciences (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132 Genoa, Italy
| |
Collapse
|