1
|
Fuentes-Aspe R, Gutierrez-Arias R, González-Seguel F, Marzuca-Nassr GN, Torres-Castro R, Najum-Flores J, Seron P. Which factors are associated with acquired weakness in the ICU? An overview of systematic reviews and meta-analyses. J Intensive Care 2024; 12:33. [PMID: 39232808 PMCID: PMC11375885 DOI: 10.1186/s40560-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
RATIONALE Intensive care unit-acquired weakness (ICUAW) is common in critically ill patients, characterized by muscle weakness and physical function loss. Determining risk factors for ICUAW poses challenges due to variations in assessment methods and limited generalizability of results from specific populations, the existing literature on these risk factors lacks a clear and comprehensive synthesis. OBJECTIVE This overview aimed to synthesize risk factors for ICUAW, categorizing its modifiable and nonmodifiable factors. METHODS An overview of systematic reviews was conducted. Six relevant databases were searched for systematic reviews. Two pairs of reviewers selected reviews following predefined criteria, where bias was evaluated. Results were qualitatively summarized and an overlap analysis was performed for meta-analyses. RESULTS Eighteen systematic reviews were included, comprising 24 risk factors for ICUAW. Meta-analyses were performed for 15 factors, while remaining reviews provided qualitative syntheses. Twelve reviews had low risk of bias, 4 reviews were unclear, and 2 reviews exhibited high risk of bias. The extent of overlap ranged from 0 to 23% for the corrected covered area index. Nonmodifiable factors, including advanced age, female gender, and multiple organ failure, were consistently associated with ICUAW. Modifiable factors, including neuromuscular blocking agents, hyperglycemia, and corticosteroids, yielded conflicting results. Aminoglycosides, renal replacement therapy, and norepinephrine were associated with ICUAW but with high heterogeneity. CONCLUSIONS Multiple risk factors associated with ICUAW were identified, warranting consideration in prevention and treatment strategies. Some risk factors have produced conflicting results, and several remain underexplored, emphasizing the ongoing need for personalized studies encompassing all potential contributors to ICUAW development.
Collapse
Affiliation(s)
- Rocío Fuentes-Aspe
- Departamento Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro Solar 115, Temuco, Chile
- Facultad de Medicina, Centro de Excelencia CIGES, Universidad de La Frontera, Temuco, Chile
| | - Ruvistay Gutierrez-Arias
- Departamento de Apoyo en Rehabilitación Cardiopulmonar Integral, Instituto Nacional del Tórax, Santiago, Chile
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
- INTRehab Research Group, Instituto Nacional del Tórax, Santiago, Chile
| | - Felipe González-Seguel
- School of Physical Therapy, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
| | - Gabriel Nasri Marzuca-Nassr
- Departamento Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro Solar 115, Temuco, Chile
| | - Rodrigo Torres-Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jasim Najum-Flores
- Hospital Dr. Hernán Henríquez Aravena, Unidad de Paciente Crítico Adulto, Temuco, Chile
| | - Pamela Seron
- Departamento Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro Solar 115, Temuco, Chile.
- Facultad de Medicina, Centro de Excelencia CIGES, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Chuang YC, Shiu SI, Lee YC, Tsai YL, Cheng YY. Prevalence and Risk Factors of Intensive Care Unit-acquired Weakness in Patients With COVID-19: A Systematic Review and Meta-analysis. J Intensive Care Med 2024:8850666241268437. [PMID: 39140376 DOI: 10.1177/08850666241268437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND Intensive care unit acquired weakness (ICUAW) is a common neuromuscular complication of critical illness, impacting patients' recovery and long-term outcomes. However, limited evidence is available on pooled prevalence and risk factors of ICUAW specifically in the COVID-19-infected population. METHODS We searched on PubMed, Embase, Cochrane Library, Web of Science, PEDro, and EBSCOhost/CINAHL up to January 31, 2024. Data synthesis was conducted using the Freeman-Tukey double-arcsine transformation model for the pooled prevalence rate and odds ratios with corresponding 95% confidence intervals was used to identify risk factors. RESULTS The pooled prevalence of ICUAW in COVID-19 patients was 55% in eight studies on 868 patients. Risk factors for developing ICUAW in these patients were: old age (WMD 4.78, 95% CI, 1.06-8.49), pre-existing hypertension (OR = 1.63, 95% CI, 1.02-2.61), medical intervention of prone position (OR = 5.21, 95% CI, 2.72-9.98), use of neuromuscular blocking agents (NMBA) (OR = 12.04, 95% CI, 6.20-23.39), needed tracheostomy (OR = 18.07, 95% CI, 5.64-57.92) and renal replacement therapy (RRT) (OR = 5.24, 95% CI = 2.36-11.63). CONCLUSIONS The prevalence of ICUAW in patients with COVID-19 was considered relatively high. Older age, pre-existing hypertension, medical intervention of prone position, NMBA use, needed tracheostomy and RRT were likely risk factors. In the future, interdisciplinary medical team should pay attention to high-risk groups for ICUAW prevention and early treatments.
Collapse
Affiliation(s)
- Ya-Chi Chuang
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Sz-Iuan Shiu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Evidence-Based Practice and Policymaking Committee, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Yu-Chun Lee
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan, ROC
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan, ROC
| | - Yu-Lin Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan, ROC
| | - Yuan-Yang Cheng
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Sedraoui S, Leduc-Gaudet JP, Mayaki D, Moamer A, Huck L, Gouspillou G, Petrof BJ, Hussain S. Lack of compensatory mitophagy in skeletal muscles during sepsis. J Physiol 2024; 602:2823-2838. [PMID: 38748778 DOI: 10.1113/jp286216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.
Collapse
Affiliation(s)
- Sami Sedraoui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
| | - Jean-Philippe Leduc-Gaudet
- Department of Medical Biology, Faculty of Health Sciences, Université du Québec à Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Dominique Mayaki
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
| | - Alaa Moamer
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
| | - Laurent Huck
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
| | - Sabah Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montral, QC, Canada
- Department of Critical Care Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Formiga MF, Dosbaba F, Hartman M, Batalik L, Senkyr V, Radkovcova I, Richter S, Brat K, Cahalin LP. Role of the Inspiratory Muscles on Functional Performance From Critical Care to Hospital Discharge and Beyond in Patients With COVID-19. Phys Ther 2023; 103:pzad051. [PMID: 37247250 DOI: 10.1093/ptj/pzad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/04/2023] [Accepted: 02/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE The role of inspiratory muscle performance in functional performance in patients with coronavirus disease 2019 (COVID-19) is poorly understood. The purpose of this study was to perform a longitudinal examination of inspiratory and functional performance from intensive care unit (ICU) discharge (ICUD) to hospital discharge (HD) and symptoms at HD and 1 month after HD in patients with COVID-19. METHODS Thirty patients (19 men, 11 women) with COVID-19 were included. Examination of inspiratory muscle performance at ICUD and HD was performed with an electronic manometer, which provided the maximal inspiratory pressure (MIP) and several other inspiratory measures. Examination of dyspnea and functional performance was performed at ICUD and HD with the Modified Borg Dyspnea Scale and the 1-minute sit-to-stand test (1MSST), respectively. RESULTS The mean age was 71 (SD = 11) years, the mean length of ICU stay was 9 (SD = 6) days, and the mean length of hospital stay was 26 (SD = 16) days. Most of the patients were diagnosed with severe COVID-19 (76.7%) and had a mean Charlson Comorbidity Index of 4.4 (SD = 1.9), reflecting high comorbidity. The mean MIP of the entire cohort increased minimally from ICUD to HD (from 36 [SD = 21] to 40 [SD = 20] cm H2O), reflecting predicted values for men and women at ICUD and HD of 46 (25%) to 51 (23%) and 37 (24%) to 37 (20%), respectively. The 1MSTS score increased significantly from ICUD to HD (9.9 [SD = 7.1] vs 17.7 [SD = 11.1]) for the entire cohort but remained far below population-based reference values (2.5th percentile) for the majority of patients at ICUD and HD. At ICUD, MIP was found to be a significant predictor of a favorable change in 1MSTS performance (β = 0.308; odds ratio = 1.36) at HD. CONCLUSION A significant reduction in inspiratory and functional performance exists in patients with COVID-19 at both ICUD and HD, with a greater MIP at ICUD being a significant predictor of a greater 1MSTS score at HD. IMPACT This study shows that inspiratory muscle training may be an important adjunct after COVID-19.
Collapse
Affiliation(s)
- Magno F Formiga
- Programa Pós-Graduação em Fisioterapia e Funcionalidade, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Filip Dosbaba
- Department of Rehabilitation, University Hospital Brno, Brno, South Moravia, Czech Republic
| | - Martin Hartman
- Department of Rehabilitation, University Hospital Brno, Brno, South Moravia, Czech Republic
- Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Ladislav Batalik
- Department of Rehabilitation, University Hospital Brno, Brno, South Moravia, Czech Republic
- Department of Public Health, Faculty of Medicine, Masaryk University Brno, Brno, South Moravia, Czech Republic
| | - Vojtech Senkyr
- Department of Rehabilitation, University Hospital Brno, Brno, South Moravia, Czech Republic
| | - Ivana Radkovcova
- Department of Rehabilitation, University Hospital Brno, Brno, South Moravia, Czech Republic
| | - Svatopluk Richter
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, South Moravia, Czech Republic
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno, Brno South Moravia, Czech Republic
| | - Lawrence P Cahalin
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| |
Collapse
|
5
|
Deutz NEP, Singer P, Wierzchowska-McNew RA, Viana MV, Ben-David IA, Pantet O, Thaden JJ, Ten Have GAM, Engelen MPKJ, Berger MM. Females have a different metabolic response to critical illness, measured by comprehensive amino acid flux analysis. Metabolism 2023; 142:155400. [PMID: 36717057 DOI: 10.1016/j.metabol.2023.155400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND The trajectory from healthy to critical illness is influenced by numerous factors, including metabolism, which differs substantially between males and females. Whole body protein breakdown is substantially increased in critically ill patients, but it remains unclear whether there are sex differences that could explain the different health outcomes. Hence, we performed a secondary analysis of a study, where we used a novel pulse isotope method in critically ill and matched healthy males and females. METHODS In 51 critically ill ICU patients (26 males, 15 females) and 49 healthy controls (36 males and 27 females), we assessed their general and disease characteristics and collected arterial(ized) blood in the postabsorptive state after pulse administration of 8 ml of a solution containing 18 stable AA tracers. In contrast to the original study, we now fitted the decay curves and calculated non-compartmental whole body amino acid production (WBP) and compartmental measurements of metabolism, including intracellular amino acid production. We measured amino acid enrichments and concentrations by LC-MS/MS and derived statistics using AN(C)OVA. RESULTS Critically ill males and females showed an increase in the WBP of many amino acids, including those related to protein breakdown, but females showed greater elevations, or in the event of a reduction, attenuated reductions. Protein breakdown-independent WBP differences remained between males and females, notably increased glutamine and glutamate WBP. Only severely ill females showed a lower increase in WBP of many amino acids in comparison to moderately ill females, suggesting a suppressed metabolism. Compartmental analysis supported the observations. CONCLUSIONS The present study shows that females have a different response to critical illness in the production of several amino acids and changes in protein breakdown, observations made possible using our innovative stable tracer pulse approach. CLINICAL TRIAL REGISTRY Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).
Collapse
Affiliation(s)
- Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America.
| | - Pierre Singer
- Dept of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | | | - Marina V Viana
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Itai A Ben-David
- Dept of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Olivier Pantet
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, United States of America
| | - Mette M Berger
- Dept of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
6
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
7
|
Schneider J, Sundaravinayagam D, Blume A, Marg A, Grunwald S, Metzler E, Escobar H, Müthel S, Wang H, Wollersheim T, Weber-Carstens S, Akalin A, Di Virgilio M, Tursun B, Spuler S. Disintegration of the NuRD Complex in Primary Human Muscle Stem Cells in Critical Illness Myopathy. Int J Mol Sci 2023; 24:2772. [PMID: 36769095 PMCID: PMC9916927 DOI: 10.3390/ijms24032772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC.
Collapse
Affiliation(s)
- Joanna Schneider
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Department of Pediatric Neurology, 13353 Berlin, Germany
- Berlin Institute of Health–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Alexander Blume
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefanie Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefanie Müthel
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Haicui Wang
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Tobias Wollersheim
- Berlin Institute of Health–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, 13353 Berlin, Germany
| | - Steffen Weber-Carstens
- Charité Universitätsmedizin Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, 13353 Berlin, Germany
| | - Altuna Akalin
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
8
|
Paul N, Weiss B. Post-Intensive Care Syndrome after Critical Illness: An Imperative for Effective Prevention. J Clin Med 2022; 11:6203. [PMID: 36294524 PMCID: PMC9604815 DOI: 10.3390/jcm11206203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last decades, the importance of intensive care has considerably increased [...].
Collapse
Affiliation(s)
| | - Björn Weiss
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
9
|
Engelhardt LJ, Grunow JJ, Wollersheim T, Carbon NM, Balzer F, Spranger J, Weber-Carstens S. Correction: Engelhardt et al. Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness. J. Clin. Med. 2022, 11, 846. J Clin Med 2022; 11:jcm11195496. [PMID: 36233843 PMCID: PMC9531767 DOI: 10.3390/jcm11195496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Due to an Editorial Office error during processing, a number of male and female symbols were incorrectly shown in the pdf version of the manuscript [...]
Collapse
Affiliation(s)
- Lilian Jo Engelhardt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Medical Informatics, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Julius J. Grunow
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tobias Wollersheim
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Niklas M. Carbon
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
10
|
Engelhardt LJ, Carbon NM, Weber-Carstens S. [54/m-Muscle weakness and prolonged weaning from mechanical ventilation after peritonitis with septic shock : Preparation course anesthesiological intensive care medicine: case 29]. DIE ANAESTHESIOLOGIE 2022; 71:149-153. [PMID: 35941303 DOI: 10.1007/s00101-022-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lilian Jo Engelhardt
- Klinik für Anästhesiologie m.S. operative Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus CVK&CCM, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
- Institut für Medizinische Informatik, Charité - Universitätsmedizin Berlin, Campus CCM, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Niklas M Carbon
- Klinik für Anästhesiologie m.S. operative Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus CVK&CCM, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
| | - Steffen Weber-Carstens
- Klinik für Anästhesiologie m.S. operative Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus CVK&CCM, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland.
| |
Collapse
|