1
|
Byers M, Guy E. The Complex Relationship Between Tuberculosis and Hyperglycemia. Diagnostics (Basel) 2024; 14:2539. [PMID: 39594205 PMCID: PMC11593071 DOI: 10.3390/diagnostics14222539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Hyperglycemia and tuberculosis are dual global pandemics. Each has a propulsive and amplifying effect on the other, and, because of this, we must consider hyperglycemia and tuberculosis together. Hyperglycemia is immunosuppressive and increases the risk of tuberculosis by threefold. It also leads to a more advanced presentation of pulmonary tuberculosis, thus increasing the likelihood of being smear positive and having cavitating lesions, and it impacts the duration and outcomes of treatment, with an increased one year mortality seen in patients with tuberculosis and diabetes. Additionally, any degree of hyperglycemia can have an impact on susceptibility to tuberculosis, and this effect is not limited to poorly controlled diabetes. Conversely, tuberculosis itself is associated with hyperglycemia and worsens hyperglycemia in those with diabetes mellitus. The impact of this relationship varies based on the base rates of each disease in different regions of the world. In order to successfully achieve the World Health Organization's goals of tuberculosis eradication and adequate glycemic control, we must improve our understanding, co-management, and screening of hyperglycemia and tuberculosis. This review aims to explore the current research investigating the relationship between tuberculosis and diabetes, including the changes in disease susceptibility, presentation, geographic distribution, and effects on treatment.
Collapse
Affiliation(s)
- Michelle Byers
- Section of Pulmonary Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
2
|
Magodoro IM, Aluoch A, Claggett B, Nyirenda MJ, Siedner MJ, Wilkinson KA, Wilkinson RJ, Ntusi NAB. Association Between Mycobacterium tuberculosis Sensitization and Insulin Resistance Among US Adults Screened for Type 2 Diabetes Mellitus. Open Forum Infect Dis 2024; 11:ofae568. [PMID: 39469603 PMCID: PMC11518572 DOI: 10.1093/ofid/ofae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) may be a long-term sequela of infection with Mycobacterium tuberculosis (Mtb) by mechanisms that remain to be fully explained. We evaluated the association between Mtb sensitization and T2DM and, via mediation analysis, the extent to which it is mediated by insulin resistance and/or β-cell failure. Methods Adults were assessed for T2DM by fasting plasma glucose, 2-hour oral glucose tolerance testing, and hemoglobin A1c; β-cell dysfunction and insulin resistance by homoeostasis model assessment 2; and Mtb sensitization by tuberculin skin testing. Associations between Mtb sensitization and T2DM were modeled with probit regression and decomposed into indirect effects of β-cell dysfunction and insulin resistance. Analyses were adjusted for sociodemographic, behavioral, and clinical characteristics. Results We included 1843 adults. Individuals with Mtb sensitization were older than those without Mtb (median [IQR], 54 [39-64] vs 47 [33-62] years). As compared with being uninfected, Mtb sensitization was associated with T2DM (adjusted absolute risk difference, 9.34% [95% CI, 2.38%-15.0%]; P < .001) and increased insulin resistance (adjusted median difference, 0.16 [95% CI, .03-.29]; P = .014) but not β-cell dysfunction (adjusted median difference, -3.1 [95% CI, -10.4 to 4.3]; P = .42). In mediation analyses, insulin resistance mediated 18.3% (95% CI, 3.29%-36.0%; P = .020) of the total effect of the association between Mtb sensitization and T2DM. Conclusions Definitive prospective studies examining incident T2DM following tuberculosis are warranted. Notwithstanding, our findings suggest that exposure to Mtb may be a novel risk factor for T2DM, likely driven by an increase in insulin resistance.
Collapse
Affiliation(s)
- Itai M Magodoro
- Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
| | - Aloice Aluoch
- Piedmont Eastside Rheumatology, Snellville, Georgia, USA
| | | | - Moffat J Nyirenda
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Mark J Siedner
- Harvard Medical School, Boston, Massachusetts, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Katalina A Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa
- Francis Crick Institute, London, UK
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa
- Francis Crick Institute, London, UK
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa
- South African Medical Research Council, Tygerberg, Republic of South Africa
- ARUA/Guild Cluster of Research Excellence on Noncommunicable Diseases and Associated Multimorbidity
| |
Collapse
|
3
|
Patel A, Nguyen L, Shea C, Singh S, Venketaraman V. The Role of mTOR in Mycobacterium tuberculosis Infection. Biomedicines 2024; 12:2238. [PMID: 39457551 PMCID: PMC11505195 DOI: 10.3390/biomedicines12102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Mycobacterium tuberculosis (M. tb) is a pathogen that causes tuberculosis (TB), an extremely infectious disease which is responsible for millions of deaths worldwide. The severity of this pathogen is further amplified with the emergence of multidrug-resistant strains that are becoming more prevalent at an alarming rate, and novel treatments are needed. Methods: In this paper, we discuss the pathology M. tb infection. We review the literature on the role that mTOR plays in autophagy and the immune system as well as its impact on M. tb infection. Lastly, we discuss the current therapies targeting mTOR and potential routes to explore for future treatments. Results: The mTOR protein acts as a negative regulator of the autophagy pathway and presents as a potent target to establish new treatments for TB. M. tb survival is affected by mTOR, the PI3K/mTOR/AKT pathway, and autophagy. M. tb evades destruction by manipulating host cellular mechanisms, which increases resistance and complicates treatment. Conclusions: Targeting mTOR can enhance autophagy and increase M. tb clearance. Existing drugs such as everolimus, rapamycin + CC214-2, and bazedoxifene are all being currently studied for effectiveness and show positive results. Alternative therapies, including Chinese herbs, baicalin, BTLA, glutathione, and precision medicine can modulate the PI3K/mTOR/AKT pathway and the host's immune response, resulting in increased M. tb clearance, and these may be the future treatments for M. tb infection.
Collapse
Affiliation(s)
| | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (L.N.); (C.S.); (S.S.)
| |
Collapse
|
4
|
Das MK, Savidge B, Pearl JE, Yates T, Miles G, Pareek M, Haldar P, Cooper AM. Altered hepatic metabolic landscape and insulin sensitivity in response to pulmonary tuberculosis. PLoS Pathog 2024; 20:e1012565. [PMID: 39331683 PMCID: PMC11463835 DOI: 10.1371/journal.ppat.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Chronic inflammation triggers development of metabolic disease, and pulmonary tuberculosis (TB) generates chronic systemic inflammation. Whether TB induced-inflammation impacts metabolic organs and leads to metabolic disorder is ill defined. The liver is the master regulator of metabolism and to determine the impact of pulmonary TB on this organ we undertook an unbiased mRNA and protein analyses of the liver in mice with TB and reanalysed published data on human disease. Pulmonary TB led to upregulation of genes in the liver related to immune signalling and downregulation of genes encoding metabolic processes. In liver, IFN signalling pathway genes were upregulated and this was reflected in increased biochemical evidence of IFN signalling, including nuclear location of phosphorylated Stat-1 in hepatocytes. The liver also exhibited reduced expression of genes encoding the gluconeogenesis rate-limiting enzymes Pck1 and G6pc. Phosphorylation of CREB, a transcription factor controlling gluconeogenesis was drastically reduced in the livers of mice with pulmonary TB as was phosphorylation of other glucose metabolism-related kinases, including GSK3a, AMPK, and p42. In support of the upregulated IFN signalling being linked to the downregulated metabolic functions in the liver, we found suppression of gluconeogenic gene expression and reduced CREB phosphorylation in hepatocyte cell lines treated with interferons. The impact of reduced gluconeogenic gene expression in the liver was seen when infected mice were less able to convert pyruvate, a gluconeogenesis substrate, to the same extent as uninfected mice. Infected mice also showed evidence of reduced systemic and hepatic insulin sensitivity. Similarly, in humans with TB, we found that changes in a metabolite-based signature of insulin resistance correlates temporally with successful treatment of active TB and with progression to active TB following exposure. These data support the hypothesis that TB drives interferon-mediated alteration of hepatic metabolism resulting in reduced gluconeogenesis and drives systemic reduction of insulin sensitivity.
Collapse
Affiliation(s)
- Mrinal K. Das
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Ben Savidge
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Gareth Miles
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, United Kingdom
| | - Manish Pareek
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Department of Infection and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- NIHR Respiratory Biomedical Research Centre, Leicester, Glenfield Hospital, Groby Road, Leicester, United Kingdom
| | - Andrea M. Cooper
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
5
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
6
|
Shetty S, Pappachan JM, Fernandez CJ. Diabetes and tuberculosis: An emerging dual threat to healthcare. World J Diabetes 2024; 15:1409-1416. [PMID: 39099826 PMCID: PMC11292341 DOI: 10.4239/wjd.v15.i7.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 07/08/2024] Open
Abstract
Tuberculosis (TB) remains a huge global healthcare challenge even in the 21st century though the prevalence has dropped in developed countries in recent decades. Diabetes mellitus (DM) is an important risk factor for the development and perpetuation of TB owing to the immune dysfunction in patients with DM. The coexistence of both diseases in the same individual also aggravates disease severity, complications, and chance of treatment failure because of gross immune alterations posed by DM as well as TB. Various complex cellular and humoral immunological factors are involved in the dangerous interaction between TB and DM, some of which remain unknown even today. It is highly important to identify the risk factors for TB in patients with DM, and vice versa, to ensure early diagnosis and management to prevent complications from this ominous coexistence. In their research study published in the recent issue of the World Journal of Diabetes, Shi et al elaborate on the factors associated with the development of TB in a large cohort of DM patients from China. More such research output from different regions of the world is expected to improve our knowledge to fight the health devastation posed by TB in patients with diabetes.
Collapse
Affiliation(s)
- Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| |
Collapse
|
7
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
8
|
Magodoro IM, Aluoch A, Claggett B, Nyirenda MJ, Siedner MJ, Wilkinson KA, Wilkinson RJ, Ntusi N. Insulin resistance, and not β-cell impairment, mediates association between Mycobacterium tuberculosis sensitization and type II diabetes mellitus among US adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.10.24304039. [PMID: 38559227 PMCID: PMC10980119 DOI: 10.1101/2024.03.10.24304039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) may be a long-term sequela of infection with Mycobacterium tuberculosis (M.tb) by mechanisms that remain to be fully explained. We evaluated association between M.tb sensitization and T2DM among U.S adults and, via formal mediation analysis, the extent to which this association is mediated by insulin resistance and/or β-cell failure. These evaluations accounted for demographic, socio-economic, behavioral and clinical characteristics. T2DM was assessed by fasting plasma glucose, 2-hour oral glucose tolerance testing and HbA1c; homoeostasis model assessment 2 (HOMA2) was used to estimate β-cell dysfunction (HOMA2-B) and insulin resistance (HOMA2-IR); while M.tb sensitization status was ascertained by tuberculin skin testing (TST). Exposure to M.tb was associated with increased risk for T2DM, likely driven by an increase in insulin resistance. Definitive prospective studies examining incident T2DM following tuberculosis are warranted. Research in Context What is already known about this subject?: Accumulating evidence suggests that pre-diabetes and new-onset type 2 diabetes mellitus (T2DM) may be a long-term complication of exposure to Mycobacterium tuberculosis ( M.tb ) via mechanisms that remain to be unraveled What is the key question?: To what extent do insulin resistance and β-cell failure mediate the association between M.tb sensitization with T2DM among US adults? What are the new findings?: M.tb sensitization is characterized by distinct glucose metabolic disturbances manifesting as increased risk of T2DM and isolated impaired fasting glucose (IFG) Insulin resistance, and not β-cell impairment, likely independently mediate the observed diabetogenic effects of M.tb sensitization How might this impact on clinical and/or public health practice in the foreseeable future?: If corroborated by prospective studies, both TB programs and individual clinical care must incorporate monitoring of serum glucose and long-term metabolic outcomesThis will be particularly urgent in sub-Saharan Africa and South-East Asia where scarce health resources coincide with overlapping endemic TB and epidemic T2DM.
Collapse
|
9
|
Aravindhan V, Yuvaraj S. Immune-endocrine network in diabetes-tuberculosis nexus: does latent tuberculosis infection confer protection against meta-inflammation and insulin resistance? Front Endocrinol (Lausanne) 2024; 15:1303338. [PMID: 38327565 PMCID: PMC10848915 DOI: 10.3389/fendo.2024.1303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Tuberculosis patients with diabetes, have higher sputum bacillary load, delayed sputum conversion, higher rates of drug resistance, higher lung cavitary involvement and extra-pulmonary TB infection, which is called as "Diabetes-Tuberculosis Nexus". However, recently we have shown a reciprocal relationship between latent tuberculosis infection and insulin resistance, which has not been reported before. In this review, we would first discuss about the immune-endocrine network, which operates during pre-diabetes and incipient diabetes and how it confers protection against LTBI. The ability of IR to augment anti-TB immunity and the immunomodulatory effect of LTBI to quench IR were discussed, under IR-LTB antagonism. The ability of diabetes to impair anti-TB immunity and ability of active TB to worsen glycemic control, were discussed under "Diabetes-Tuberculosis Synergy". The concept of "Fighter Genes" and how they confer protection against TB but susceptibility to IR was elaborated. Finally, we conclude with an evolutionary perspective about how IR and LTBI co-evolved in endemic zones, and have explained the molecular basis of "IR-LTB" Antagonism" and "DM-TB Synergy", from an evolutionary perspective.
Collapse
Affiliation(s)
- Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Chennai, India
| | | |
Collapse
|
10
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
11
|
Lim J, Kim JS, Kim HW, Kim YH, Jung SS, Kim JW, Oh JY, Lee H, Kim SK, Kim SH, Lyu J, Ko Y, Kwon SJ, Jeong YJ, Kim DJ, Koo HK, Jegal Y, Kyung SY, An TJ, Min J. Metabolic Disorders Are Associated With Drug-Induced Liver Injury During Antituberculosis Treatment: A Multicenter Prospective Observational Cohort Study in Korea. Open Forum Infect Dis 2023; 10:ofad422. [PMID: 37654787 PMCID: PMC10468151 DOI: 10.1093/ofid/ofad422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Background Drug-induced liver injury (DILI) may lead to the discontinuation of antituberculosis (anti-TB) treatment (ATT). Some studies have suggested that metabolic disorders increase the risk of DILI during ATT. This study aimed to identify risk factors for DILI, particularly metabolic disorders, during ATT. Methods A multicenter prospective observational cohort study to evaluate adverse events during ATT was conducted in Korea from 2019 to 2021. Drug-susceptible patients with TB who had been treated with standard ATT for 6 months were included. The patients were divided into 2 groups depending on the presence of 1 or more metabolic conditions, such as insulin resistance, hypertension, obesity, and dyslipidemia. We monitored ATT-related adverse events, including DILI, and treatment outcomes. The incidence of DILI was compared between individuals with and without metabolic disorders, and related factors were evaluated. Results Of 684 patients, 52 (7.6%) experienced DILI, and 92.9% of them had metabolic disorders. In the multivariable analyses, underlying metabolic disorders (adjusted hazard ratio [aHR], 2.85; 95% CI, 1.01-8.07) and serum albumin <3.5 g/dL (aHR, 2.26; 95% CI, 1.29-3.96) were risk factors for DILI during ATT. In the 1-month landmark analyses, metabolic disorders were linked to an elevated risk of DILI, especially significant alanine aminotransferase elevation. The treatment outcome was not affected by the presence of metabolic disorders. Conclusions Patients with metabolic disorders have an increased risk of ATT-induced liver injury compared with controls. The presence of metabolic disorders and hypoalbuminemia adversely affects the liver in patients with ATT.
Collapse
Affiliation(s)
- Jihye Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hyun Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Soo Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heayon Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Kyoung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jiwon Lyu
- Department of Pulmonary and Critical Care Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Yousang Ko
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sun Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Yun-Jeong Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hyeon-Kyoung Koo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yangjin Jegal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Sun Young Kyung
- Division of Pulmonology, Departments of Internal Medicine, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
12
|
Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause-effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol 2023; 13:1134036. [PMID: 37434784 PMCID: PMC10330781 DOI: 10.3389/fcimb.2023.1134036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest human diseases and is one of the major causes of mortality and morbidity across the Globe. Mycobacterium tuberculosis (Mtb), the causal agent of TB is one of the most successful pathogens known to mankind. Malnutrition, smoking, co-infection with other pathogens like human immunodeficiency virus (HIV), or conditions like diabetes further aggravate the tuberculosis pathogenesis. The association between type 2 diabetes mellitus (DM) and tuberculosis is well known and the immune-metabolic changes during diabetes are known to cause increased susceptibility to tuberculosis. Many epidemiological studies suggest the occurrence of hyperglycemia during active TB leading to impaired glucose tolerance and insulin resistance. However, the mechanisms underlying these effects is not well understood. In this review, we have described possible causal factors like inflammation, host metabolic changes triggered by tuberculosis that could contribute to the development of insulin resistance and type 2 diabetes. We have also discussed therapeutic management of type 2 diabetes during TB, which may help in designing future strategies to cope with TB-DM cases.
Collapse
Affiliation(s)
- Manoj Kumar Bisht
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Dahiya
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sudip Ghosh
- Molecular Biology Unit, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
13
|
Oswal N, Thangavel H, Lizardo K, Dhanyalayam D, Sidrat T, Salgame P, Nagajyothi JF. Diets Differently Regulate Pulmonary Pathogenesis and Immune Signaling in Mice during Acute and Chronic Mycobacterium tuberculosis Infection. Life (Basel) 2023; 13:228. [PMID: 36676177 PMCID: PMC9861969 DOI: 10.3390/life13010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection persists as a leading cause of mortality and morbidity globally, especially in developing and underdeveloped countries. The prevalence of TB-DM (diabetes mellitus) is higher in low- and middle-income countries where TB and DM are most prevalent. Epidemiological data suggest that slight obesity reduces the risk of TB, whereas DM increases the risk of pulmonary TB. Diets can alter the levels of body fat mass and body mass index by regulating systemic adiposity. Earlier, using a transgenic Mtb-infected murine model, we demonstrated that loss of body fat increased the risk of pulmonary bacterial load and pathology. In the present study, we investigated whether increased adiposity alters pulmonary pathology and bacterial load using C57BL/6 mice infected with HN878 Mtb strain and fed a medium-fat diet (MFD). We analyzed the effects of MFD on the lung during acute and chronic infections by comparing the results to those obtained with infected mice fed a regular diet (RD). Histological and biochemical analyses demonstrated that MFD reduces bacterial burden by increasing the activation of immune cells in the lungs during acute infection and reduces necrosis in the lungs during chronic infection by decreasing lipid accumulation. Our data suggest that slight adiposity likely protects the host during active TB infection by regulating immune and metabolic conditions in the lungs.
Collapse
Affiliation(s)
- Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
14
|
Thangavel H, Lizardo K, Dhanyalayam D, De Assis S, Nagajyothi JF. Diets Differently Regulate Tumorigenesis in Young E0771 Syngeneic Breast Cancer Mouse Model. J Clin Med 2023; 12:413. [PMID: 36675341 PMCID: PMC9862441 DOI: 10.3390/jcm12020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer type, accounting for one in eight cancer diagnoses worldwide. Epidemiological studies have shown that obesity is associated with increased risk of BC in post-menopausal women, whereas adiposity reduces the risk of BC in premenopausal women. The mechanistic link between obesity and BC has been examined by combining murine BC models with high-fat diet (HFD) induced obesity. However, the effect of adiposity (not obesity) induced by a short period of HFD consumption on BC pathogenesis is not well understood. In the current study, we examined the effects of different diet compositions on BC pathogenesis using a young E0771 syngeneic BC mouse model fed on either an HFD or regular diet (RD: a low-fat high-carbohydrate diet) for a short period (4 weeks) before implanting mammary tumors in mice. We analyzed the effect of diet composition on the onset of tumor growth, metastasis, and metabolic and immune status in the tumor microenvironment (TME) using various methods including in vivo bioluminescence imaging and immunoblotting analyses. We showed for the first time that a short-term HFD delays the onset of tumorigenesis by altering the immune and metabolic signaling and energy mechanism in the TME. However, RD may increase the risk of tumorigenesis and metastasis by increasing pro-inflammatory factors in the TME in young mice. Our data suggest that diet composition, adipogenesis, and loss of body fat likely regulate the pathogenesis of BC in a manner that differs between young and post-menopausal subjects.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Sonia De Assis
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
15
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
16
|
Association between vitamin D and insulin resistance in adults with latent tuberculosis infection: Results from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. J Infect Public Health 2022; 15:930-935. [PMID: 35878516 DOI: 10.1016/j.jiph.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Evidence demonstrated that vitamin D insufficiency was involved in insulin resistance (IR) pathogenesis and associated with tuberculosis. However, the association of vitamin D and IR in patients with latent tuberculosis infection (LTBI) remains unclear. This study aims to evaluate the association between vitamin D and insulin resistance in US adults with LTBI. METHOD National Health and Nutrition Examination Survey (NHANES) participants ≥ 20 years during the years 2011-2012 with positive QuantiFERON®-TB Gold-In-Tube (QFT) or tuberculin skin testing (TST) were enrolled in present study. Participants with LTBI were divided into 2 groups: (1) vitamin D insufficiency group (n = 267), and (2) vitamin D sufficiency group (n = 437). RESULTS Weighted analysis of all the population in the study showed that serum 25(OH)D inversely correlated with HOMA-IR (r = -0.14, P = 0.008). The vitamin D insufficiency group had higher fasting insulin (17.5 (1.38) vs. 15.29 (3.1), respectively, P = 0.0013) and HOMA-IR (5.0 (0.4) vs. 4.5 (1), respectively, P = 0.013) than the vitamin D sufficiency group. In adjusted analysis, vitamin D levels was independently associated with insulin resistance (adjusted OR [aOR] 2.74; 95% CI, 1.01-7.48, p = 0.0489). CONCLUSIONS Taken together, our study suggested that serum 25(OH) D concentrations were inversely and independently associated with HOMA-IR in LTBI.
Collapse
|