1
|
Geroldinger-Simic M, Sohail A, Razazian M, Krennmayr B, Pernsteiner V, Putz T, Lackner HK, Pasch A, Sepp N, Alesutan I, Voelkl J. Accelerated calciprotein crystallization time (T50) is correlated with impaired lung diffusion capacity in systemic sclerosis. Front Immunol 2024; 15:1425885. [PMID: 39399492 PMCID: PMC11466802 DOI: 10.3389/fimmu.2024.1425885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Background Systemic sclerosis (SSc) is a complex auto-immune disease characterized by vascular damage, inflammation, fibrosis and calcinosis, where pulmonary involvement is the leading cause of mortality. Calciprotein particles (CPPs) are increasingly formed upon disbalance of the physiological mineral buffering system and induce pro-inflammatory effects. This exploratory study investigated whether functional indicators of the endogenous mineral buffering system are dysregulated in SSc and linked to disease activity. Methods T50 (calciprotein crystallization test or serum calcification propensity) and hydrodynamic radius of secondary CPPs (CPP2) were determined in serum samples from 78 SSc patients and 44 controls without SSc, and were associated with disease activity markers of SSc. Results T50 was reduced and CPP2 radius was increased in SSc patients as compared to controls, indicating a deranged mineral buffering system. This was accompanied by slightly higher serum phosphate and PTH levels in SSc patients, while iFGF23 was not significantly modified. Longitudinally, all parameters remained unchanged over time in SSc patients, only iFGF23 increased. While the modified Rodnan skin score showed some inconsistent correlations with mineral buffering indicators, their association was not independent of other factors. However, lower T50 was significantly correlated to reduced lung diffusion capacity and this association remained significant in a multivariate linear regression model. Conclusion This study provides indications for a disturbed mineral buffering system in SSc. Increased serum calcification propensity (lower T50) is correlated with impaired lung diffusion capacity, suggesting a possible role of deranged mineral buffering in disease progression. Further studies are required to confirm these observations in larger cohorts and to investigate a putative functional relevance.
Collapse
Affiliation(s)
- Marija Geroldinger-Simic
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, Linz, Austria
- Faculty of Medicine, Johannes Kepler University, Linz, Austria
| | - Azmat Sohail
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Beatrice Krennmayr
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Victoria Pernsteiner
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Thomas Putz
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Helmut K. Lackner
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Calciscon AG, Biel, Switzerland
| | - Norbert Sepp
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
2
|
Sohail A, Obereigner J, Mitter G, Schmid T, Hofer AS, Schuster G, Hügl A, Dorninger AH, Mandl M, Pasch A, Lackner HK, Papousek I, Dieplinger B, Suessner S, Antlanger M, Cejka D, Alesutan I, Voelkl J. Association of serum zinc with mineral stress in chronic kidney disease. Clin Kidney J 2024; 17:sfae258. [PMID: 39286240 PMCID: PMC11403325 DOI: 10.1093/ckj/sfae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background The excessive cardiovascular mortality of patients with chronic kidney disease (CKD) could be linked to mineral stress, the biological consequence of calcium-phosphate nanoparticle exposure. This study investigated whether zinc is associated with mineral stress markers in CKD. Methods Zinc and T50 (serum calcification propensity) as well as hydrodynamic radius of secondary calciprotein particles (CPP2) were measured in blood donors and CKD patients with/out dialysis. Results Serum zinc concentrations and T50 were reduced, while CPP2 radius was increased in CKD patients. Serum zinc levels positively correlated with T50 and inversely correlated with CPP2 radius. In a hierarchical linear regression model, T50 was associated with age, calcium, phosphate, magnesium and albumin. Addition of zinc significantly improved prediction of the model, confirming an additional contribution of zinc to T50. Similar observations were made for the association of zinc and CPP2 radius, but spiking experiments indicated that zinc may stronger modify T50 than CPP2 radius. Also, urinary zinc excretion was increased in patients with kidney disease and correlated to T50 and CPP2 radius. Serum zinc further correlated with markers of arterial stiffness in blood donors and CKD patients, but these associations did not remain significant in a multivariate linear regression model. Conclusions Reduced serum zinc levels in CKD appear directly linked to lower T50 and associated with larger CPP2 radius. Further studies on the associations of zinc and mineral stress as well as putative therapeutic benefits of zinc supplementation are required.
Collapse
Affiliation(s)
- Azmat Sohail
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Obereigner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Gregor Mitter
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | | | - Anna-Sofie Hofer
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| | - Gerhard Schuster
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Astrid Hügl
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Angelika H Dorninger
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Markus Mandl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Calciscon AG, Biel, Switzerland
| | - Helmut K Lackner
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilona Papousek
- Institute of Psychology, Biological Psychology Unit, University of Graz, Graz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, Linz, Austria
| | - Susanne Suessner
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Marlies Antlanger
- Department of Internal Medicine 2, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Wynsberghe JV, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Snijders BMG, Peters MJL, Koek HL. Ectopic Calcification: What Do We Know and What Is the Way Forward? J Clin Med 2023; 12:jcm12113687. [PMID: 37297880 DOI: 10.3390/jcm12113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Ectopic calcification, or ectopic mineralization, is a pathologic condition in which calcifications develop in soft tissues [...].
Collapse
Affiliation(s)
- Birgitta M G Snijders
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mike J L Peters
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
7
|
Ralph D, Levine M, Millán JL, Uitto J, Li Q. Weighing the Evidence for the Roles of Plasma Versus Local Pyrophosphate in Ectopic Calcification Disorders. J Bone Miner Res 2023; 38:457-463. [PMID: 36807615 PMCID: PMC10365072 DOI: 10.1002/jbmr.4791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Ectopic calcification is characterized by inappropriate deposition of calcium mineral in nonskeletal connective tissues and can cause significant morbidity and mortality, particularly when it affects the cardiovascular system. Identification of the metabolic and genetic determinants of ectopic calcification could help distinguish individuals at the greatest risk of developing these pathological calcifications and could guide development of medical interventions. Inorganic pyrophosphate (PPi ) has long been recognized as the most potent endogenous inhibitor of biomineralization. It has been intensively studied as both a marker and a potential therapeutic for ectopic calcification. Decreased extracellular concentrations of PPi have been proposed to be a unifying pathophysiological mechanism for disorders of ectopic calcification, both genetic and acquired. However, are reduced plasma concentrations of PPi a reliable predictor of ectopic calcification? This perspective article evaluates the literature in favor and against a pathophysiological role of plasma versus tissue PPi dysregulation as a determinant of, and as a biomarker for, ectopic calcification. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Levine
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|