1
|
Shen Z, Zhang Y, Bu G, Fang L. Renal denervation improves mitochondrial oxidative stress and cardiac hypertrophy through inactivating SP1/BACH1-PACS2 signaling. Int Immunopharmacol 2024; 141:112778. [PMID: 39173402 DOI: 10.1016/j.intimp.2024.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Renal denervation (RDN) has been proved to relieve cardiac hypertrophy; however, its detailed mechanisms remain obscure. This study investigated the detailed protective mechanisms of RDN against cardiac hypertrophy during hypertensive heart failure (HF). METHODS Male 5-month-old spontaneously hypertension (SHR) rats were used in a HF rat model, and male Wistar-Kyoto (WKY) rats of the same age were used as the baseline control. Myocardial hypertrophy and fibrosis were evaluated by hematoxylin-eosin (HE) staining and Masson staining. The expression of target molecule was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, immunohistochemical and immunofluorescence, respectively. Cardiomyocyte hypertrophy was induced by norepinephrine (NE) in H9c2 cells in vitro and evaluated by brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP), β-myosin heavy chain (β-MHC), and α-myosin heavy chain (α-MHC) levels. Oxidative stress was determined by malondialdehyde (MDA) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzyme activities. Mitochondrial function was measured by mitochondrial membrane potential, adenosine triphosphate (ATP) production, mitochondrial DNA (mtDNA) number, and mitochondrial complex I-IV activities. Molecular mechanism was assessed by dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS RDN decreased sympathetic nerve activity, attenuated myocardial hypertrophy and fibrosis, and improved cardiac function in the rat model of HF. In addition, RDN ameliorated mitochondrial oxidative stress in myocardial tissues as evidenced by reducing MDA and mitochondrial reactive oxygen species (ROS) levels, and enhancing SOD and GSH-Px activities. Moreover, phosphofurin acid cluster sorting protein 2 (PACS-2) and broad-complex, tramtrak and bric à brac (BTB) domain and cap'n'collar (CNC) homolog 1 (BACH1) were down-regulated by RDN. In NE-stimulated H9c2 cells, PACS-2 and BACH1 levels were markedly elevated, and knockdown of them could suppress NE-induced oxidative stress, cardiomyocyte hypertrophy, fibrosis, as well as mitochondrial dysfunction. Transforming growth factor beta1(TGFβ1)/SMADs signaling pathway was inactivated by RDN in the HF rats, which sequentially inhibited specificity protein 1 (SP1)-mediated transcription of PACS2 and BACH1. CONCLUSION Collectively, these data demonstrated that RDN improved cardiac hypertrophy and sympathetic nerve activity of HF rats via repressing BACH1 and PACS-2-mediated mitochondrial oxidative stress by inactivating TGF-β1/SMADs/SP1 pathway, which shed lights on the cardioprotective mechanism of RDN in HF.
Collapse
Affiliation(s)
- Zhijie Shen
- Department of Cardiology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha 410005, Hunan Province, PR China
| | - Yinzhuang Zhang
- Department of Cardiology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha 410005, Hunan Province, PR China
| | - Guangkui Bu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410024, Hunan Province, PR China
| | - Li Fang
- Department of Cardiology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha 410005, Hunan Province, PR China.
| |
Collapse
|
2
|
Evans LC, Dayton A, Osborn JW. Renal nerves in physiology, pathophysiology and interoception. Nat Rev Nephrol 2024:10.1038/s41581-024-00893-3. [PMID: 39363020 DOI: 10.1038/s41581-024-00893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
| | - John W Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Katsurada K, Kario K. Effects of renal denervation on the incidence and severity of cardiovascular diseases. Hypertens Res 2024; 47:2700-2710. [PMID: 39210082 DOI: 10.1038/s41440-024-01858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Renal denervation (RDN) is a neuromodulation therapy performed in patients with hypertension using an intraarterial catheter. Recent randomized sham-controlled trials have shown that RDN has significant antihypertensive effects that last for more than 3 years. Based on this evidence, the US Food and Drug Administration has approved two devices, the ultrasound-based ReCor ParadiseTM RDN system and the radiofrequency-based Medtronic Symplicity SpyralTM RDN system, as adjunctive therapy for patients with refractory and uncontrolled hypertension. On the other hand, there have been no randomized sham-controlled prospective outcome trials on RDN, and the effects of RDN on cardiovascular events such as myocardial infarction, heart failure, and stroke have not been elucidated. This mini-review summarizes the latest findings focusing on the effects of RDN on organ protection and physiological function and symptoms in both preclinical and clinical studies. Furthermore, the feasibility of using blood pressure as surrogate marker for cardiovascular outcomes is discussed in the context of relevant clinical studies on RDN. A comprehensive understanding of the beneficial effects of RDN on the incidence and severity of cardiovascular diseases with their underlying mechanisms will enhance physicians' ability to incorporate RDN into clinical strategies to prevent cardiovascular events including myocardial infarction, heart failure, and stroke. This mini-review focuses on the effects of RDN on organ protection and physiological function and symptoms in preclinical and clinical studies. RDN is expected to reduce the onset and progression of cardiovascular diseases including myocardial infarction, heart failure, and stroke in clinical practice. LV left ventricular, LVEF left ventricular ejection fraction, VO2max maximal oxygen uptake, VT ventricular tachycardia, VF ventricular fibrillation, 6MWD 6-min walk distance, NT-proBNP N-terminal pro-B-type natriuretic peptide, NYHA New York Heart Association, BBB blood-brain barrier, BP blood pressure.
Collapse
Affiliation(s)
- Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
4
|
Buryskova Salajova K, Malik J, Valerianova A. Cardiorenal Syndromes and Their Role in Water and Sodium Homeostasis. Physiol Res 2024; 73:173-187. [PMID: 38710052 PMCID: PMC11081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 05/08/2024] Open
Abstract
Sodium is the main osmotically active ion in the extracellular fluid and its concentration goes hand in hand with fluid volume. Under physiological conditions, homeostasis of sodium and thus amount of fluid is regulated by neural and humoral interconnection of body tissues and organs. Both heart and kidneys are crucial in maintaining volume status. Proper kidney function is necessary to excrete regulated amount of water and solutes and adequate heart function is inevitable to sustain renal perfusion pressure, oxygen supply etc. As these organs are bidirectionally interconnected, injury of one leads to dysfunction of another. This condition is known as cardiorenal syndrome. It is divided into five subtypes regarding timeframe and pathophysiology of the onset. Hemodynamic effects include congestion, decreased cardiac output, but also production of natriuretic peptides. Renal congestion and hypoperfusion leads to kidney injury and maladaptive activation of renin-angiotensin-aldosterone system and sympathetic nervous system. In cardiorenal syndromes sodium and water excretion is impaired leading to volume overload and far-reaching negative consequences, including higher morbidity and mortality of these patients. Keywords: Cardiorenal syndrome, Renocardiac syndrome, Volume overload, Sodium retention.
Collapse
Affiliation(s)
- K Buryskova Salajova
- 3rd Department of Internal Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
5
|
Xie L, Li Y, Luo S, Huang B. Impact of renal denervation on cardiac remodeling in resistant hypertension: A meta-analysis. Clin Cardiol 2024; 47:e24222. [PMID: 38402531 PMCID: PMC10823454 DOI: 10.1002/clc.24222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Twelve studies involving 433 patients were included. After RDN treatment, LVMI decreased by 13.08 g/m2 (95% confidence interval [CI]: -18.38, -7.78; p < .00001), PWTd decreased by 0.60 mm (95% CI: -0.87, -0.34; p < .00001), IVSTd decreased by 0.78 mm (95% CI: -1.06, -0.49; p < .00001), and LVEF increased by 1.80% (95% CI: 0.71, 2.90; p = .001). However, there were no statistically significant improvements in LVIDd (95% CI: -1.40, 0.24; p = .17) and diastolic function (E/A) (95% CI: -0.04, 0.14; p = .28). Drug treatment for resistant hypertension (RH) is challenging. Renal denervation (RDN) is one of the most promising treatments for RH. Although studies have shown RDN can control blood pressure, the impacts of RDN on cardiac remodeling and cardiac function are unclear. This meta-analysis evaluated the effect of RDN on cardiac structure and function in patients with RH. PubMed, Embase, and Cochrane were used to conduct a systematic search. The main inclusion criteria were studies on patients with RH who received RDN and reported the changes in echocardiographic parameters before and after RDN. Echocardiographic parameters included left ventricular mass index (LVMI), end-diastolic left ventricular internal dimension (LVIDd), left ventricular end-diastolic posterior wall thickness (PWTd), end-diastolic interventricular septum thickness (IVSTd), E/A, and left ventricular ejection fraction (LVEF). Data was analyzed using RevMan. Twelve studies involving 433 patients were included. After RDN treatment, LVMI decreased by 13.08g/m2 (95%confidence interval [CI]: -18.38, -7.78, p < .00001), PWTd decreased by 0.60mm (95% CI: -0.87, -0.34, p < 0.00001), IVSTd decreased by 0.78mm (95% CI: -1.06, -0.49, p < .00001), and LVEF increased by 1.80% (95% CI: 0.71, 2.90, p = .001). However, there were no statistically significant improvements in LVIDd (95% CI: -1.40, 0.24, p = .17) and diastolic function (E/A) (95% CI: -0.04, 0.14, p =.28). This meta-analysis finds that RDN can improve left ventricular hypertrophy and ejection fraction in patients with RH but has no significant effect on LVIDd and diastolic function. However, more studies are warranted due to the lack of a strict control group, a limited sample size, and research heterogeneity.
Collapse
Affiliation(s)
- Linfeng Xie
- Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuanzhu Li
- Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Suxin Luo
- Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bi Huang
- Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Goyal A, Jain H, Verma A, Jain J, Shamim U, Kanagala SG, Motwani J, Dey RC, Chunawala Z, Sohail AH, Belur AD. The role of renal denervation in cardiology and beyond: An updated comprehensive review and future directives. Curr Probl Cardiol 2024; 49:102196. [PMID: 37952794 DOI: 10.1016/j.cpcardiol.2023.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Renal denervation (RDN) is a minimally invasive intervention performed by denervation of the nervous fibers in the renal plexus, which decreases sympathetic activity. These sympathetic nerves influence various physiological functions that regulate blood pressure (BP), including intravascular volume, electrolyte composition, and vascular tone. Although proven effective in some trials, controversial trials, such as the Controlled Trial of Renal Denervation for Resistant Hypertension (SYMPLICITY-HTN3), have demonstrated contradictory results for the effectiveness of RDN in resistant hypertension (HTN). In the treatment of HTN, individuals with primary HTN are expected to experience greater benefits compared to those with secondary HTN due to the diverse underlying causes of secondary HTN. Beyond its application for HTN, RDN has also found utility in addressing cardiac arrhythmias, such as atrial fibrillation, and managing cases of heart failure. Non-cardiogenic applications of RDN include reducing the intensity of obstructive sleep apnea (OSA), overcoming insulin resistance, and in chronic kidney disease (CKD) patients. This article aims to provide a comprehensive review of RDN and its uses in cardiology and beyond, along with providing future directions and perspectives.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Amogh Verma
- Department of Medicine and Surgery, Rama Medical College Hospital and Research Centre, Hapur, India
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Urooj Shamim
- Department of Internal Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, NY, New York, United States
| | - Jatin Motwani
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Rohit Chandra Dey
- Department of Internal Medicine, Altai State Medical University, Barnaul, Altai Krai, Russia
| | - Zainali Chunawala
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico Health Sciences, Albuquerque, NM, United States
| | - Agastya D Belur
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
7
|
Triposkiadis F, Briasoulis A, Sarafidis P, Magouliotis D, Athanasiou T, Paraskevaidis I, Skoularigis J, Xanthopoulos A. The Sympathetic Nervous System in Hypertensive Heart Failure with Preserved LVEF. J Clin Med 2023; 12:6486. [PMID: 37892623 PMCID: PMC10607346 DOI: 10.3390/jcm12206486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The neurohormonal model of heart failure (HF) pathogenesis states that a reduction in cardiac output caused by cardiac injury results in sympathetic nervous system (SNS) activation, that is adaptive in the short-term and maladaptive in the long-term. This model has proved extremely valid and has been applied in HF with a reduced left ventricular (LV) ejection fraction (LVEF). In contrast, it has been undermined in HF with preserved LVEF (HFpEF), which is due to hypertension (HTN) in the vast majority of the cases. Erroneously, HTN, which is the leading cause of cardiovascular disease and premature death worldwide and is present in more than 90% of HF patients, is tightly linked with SNS overactivity. In this paper we provide a contemporary overview of the contribution of SNS overactivity to the development and progression of hypertensive HF (HHF) as well as the clinical implications resulting from therapeutic interventions modifying SNS activity. Throughout the manuscript the terms HHF with preserved LVEF and HfpEF will be used interchangeably, considering that the findings in most HFpEF studies are driven by HTN.
Collapse
Affiliation(s)
| | - Alexandros Briasoulis
- Department of Therapeutics, Heart Failure and Cardio-Oncology Clinic, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Dimitrios Magouliotis
- Unit of Quality Improvement, Department of Cardiothoracic Surgery, University of Thessaly, 411 10 Biopolis, Greece;
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK;
| | | | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 411 10 Larissa, Greece;
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 411 10 Larissa, Greece;
| |
Collapse
|
8
|
Zucker IH, Xia Z, Wang HJ. Potential Neuromodulation of the Cardio-Renal Syndrome. J Clin Med 2023; 12:803. [PMID: 36769450 PMCID: PMC9917464 DOI: 10.3390/jcm12030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.
Collapse
Affiliation(s)
- Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiqiu Xia
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|