1
|
Staal FH, Janssen J, Krishnapillai S, Langendijk JA, Both S, Brouwer CL, Aluwini S. Target coverage and organs at risk dose in hypofractionated salvage radiotherapy after prostatectomy. Phys Imaging Radiat Oncol 2024; 31:100600. [PMID: 39022396 PMCID: PMC11254181 DOI: 10.1016/j.phro.2024.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Introducing moderately hypofractionated salvage radiotherapy (SRT) following prostatectomy obligates investigation of its effects on clinical target volume (CTV) coverage and organ-at-risk (OAR) doses. This study assessed interfractional volume and dose changes in OARs and CTV in moderately hypofractionated SRT and evaluated the 8-mm planning target volume (PTV) margin. Materials and methods Twenty patients from the PERYTON-trial were included; 10 received conventional SRT (35 × 2 Gy) and 10 hypofractionated SRT (20 × 3 Gy). OARs were delineated on 539 pre-treatment Cone Beam CT (CBCT) scans to compare interfractional OAR volume changes. CTVs for the hypofractionated group were delineated on 199 CBCTs. Dose distributions with 4 and 6 mm PTV margins were generated using voxel-wise minimum robustness evaluation of the original 8-mm PTV plan, and dose changes were assessed. Results Median volume changes for bladder and rectum were -26 % and -10 %, respectively. OAR volume changes were not significantly different between the two treatment schedules. The 8-mm PTV margin ensured optimal coverage for prostate bed and vesicle bed CTV (V95 = 100 % in >97 % fractions). However, bladder V60 <25 % was not achieved in 5 % of fractions, and rectum V60 <5 % was unmet in 33 % of fractions. A 6-mm PTV margin resulted in CTV V95 = 100 % in 92 % of fractions for prostate bed, and in 86 % for vesicle bed CTV. Conclusions Moderately hypofractionated SRT yielded comparable OAR volume changes to conventionally fractionated SRT. Interfractional changes remained acceptable with a PTV margin of 6 mm for prostate bed and 8 mm for vesicle bed.
Collapse
Affiliation(s)
- Floor H.E. Staal
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Jorinde Janssen
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Sajee Krishnapillai
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Johannes A. Langendijk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Stefan Both
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Charlotte L. Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Shafak Aluwini
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Potkrajcic V, Gani C, Fischer SG, Boeke S, Niyazi M, Thorwarth D, Voigt O, Schneider M, Mönnich D, Kübler S, Boldt J, Hoffmann E, Paulsen F, Mueller AC, Wegener D. Online Adaptive MR-Guided Ultrahypofractionated Radiotherapy of Prostate Cancer on a 1.5 T MR-Linac: Clinical Experience and Prospective Evaluation. Curr Oncol 2024; 31:2679-2688. [PMID: 38785484 PMCID: PMC11120184 DOI: 10.3390/curroncol31050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The use of hypofractionated radiotherapy in prostate cancer has been increasingly evaluated, whereas accumulated evidence demonstrates comparable oncologic outcomes and toxicity rates compared to normofractionated radiotherapy. In this prospective study, we evaluate all patients with intermediate-risk prostate cancer treated with ultrahypofractionated (UHF) MRI-guided radiotherapy on a 1.5 T MR-Linac within our department and report on workflow and feasibility, as well as physician-recorded and patient-reported longitudinal toxicity. A total of 23 patients with intermediate-risk prostate cancer treated on the 1.5 T MR-Linac with a dose of 42.7 Gy in seven fractions (seven MV step-and-shoot IMRT) were evaluated within the MRL-01 study (NCT04172753). The duration of each treatment step, choice of workflow (adapt to shape-ATS or adapt to position-ATP) and technical and/or patient-sided treatment failure were recorded for each fraction and patient. Acute and late toxicity were scored according to RTOG and CTC V4.0, as well as the use of patient-reported questionnaires. The median follow-up was 12.4 months. All patients completed the planned treatment. The mean duration of a treatment session was 38.2 min. In total, 165 radiotherapy fractions were delivered. ATS was performed in 150 fractions, 5 fractions were delivered using ATP, and 10 fractions were delivered using both ATS and ATP workflows. Severe acute bother (G3+) regarding IPS-score was reported in five patients (23%) at the end of radiotherapy. However, this tended to normalize and no G3+ IPS-score was observed later at any point during follow-up. Furthermore, no other severe genitourinary (GU) or gastrointestinal (GI) acute or late toxicity was observed. One-year biochemical-free recurrence survival was 100%. We report the excellent feasibility of UHF MR-guided radiotherapy for intermediate-risk prostate cancer patients and acceptable toxicity rates in our preliminary study. Randomized controlled studies with long-term follow-up are warranted to detect possible advantages over current state-of-the-art RT techniques.
Collapse
Affiliation(s)
- Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Stefan Georg Fischer
- Department of Radiation Oncology, Klinikum Esslingen, 73730 Esslingen am Neckar, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Otilia Voigt
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Moritz Schneider
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - David Mönnich
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Sarah Kübler
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Arndt-Christian Mueller
- Department of Radiation Oncology and Radiotherapy, RKH-Kliniken Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Alb-Fils Kliniken GmbH, 73035 Goeppingen, Germany
| |
Collapse
|
3
|
Gonsalves D, Ocanto A, Meilan E, Gomez A, Dominguez J, Torres L, Pascual CF, Teja M, Linde MM, Guijarro M, Rivas D, Begara J, González JA, Andreescu J, Holgado E, Alcaraz D, López E, Dzhugashvli M, Lopez-Campos F, Alongi F, Couñago F. Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers (Basel) 2024; 16:1685. [PMID: 38730637 PMCID: PMC11083553 DOI: 10.3390/cancers16091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This observational, descriptive, longitudinal, and prospective basket-type study (Registry #5289) prospectively evaluated the feasibility and acute toxicity of hypo-fractionated radiotherapy on the first 0.35T MR-LINAC in Spain. A total of 37 patients were included between August and December 2023, primarily with prostate tumors (59.46%), followed by pancreatic tumors (32.44%). Treatment regimens typically involved extreme hypo-fractionated radiotherapy, with precise dose delivery verified through quality assurance measures. Acute toxicity assessment at treatment completion revealed manageable cystitis, with one case persisting at the three-month follow-up. Gastrointestinal toxicity was minimal. For pancreatic tumors, daily adaptation of organ-at-risk (OAR) and gross tumor volume (GTV) was practiced, with median doses to OAR within acceptable limits. Three patients experienced gastrointestinal toxicity, mainly nausea. Overall, the study demonstrates the feasibility and safety of extreme hypo-fractionated radiotherapy on a 0.35T MR-LINAC, especially for challenging anatomical sites like prostate and pancreatic tumors. These findings support the feasibility of MR-LINAC-based radiotherapy in delivering precise treatments with minimal toxicity, highlighting its potential for optimizing cancer treatment strategies.
Collapse
Affiliation(s)
- Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Eduardo Meilan
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Alberto Gomez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Jesus Dominguez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Castalia Fernández Pascual
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Miguel Montijano Linde
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Daniel Rivas
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Jose Begara
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | | | - Jon Andreescu
- Department of Radiation Oncology, GenesisCare Cordoba, 14012 Madrid, Spain;
| | - Esther Holgado
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Diego Alcaraz
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Escarlata López
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Maia Dzhugashvli
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Fernando Lopez-Campos
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy;
- Radiation Oncology School, University of Brescia, 25121 Brescia, Italy
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
4
|
Hassan SP, de Leon J, Batumalai V, Moutrie Z, Hogan L, Ge Y, Stricker P, Jameson MG. Magnetic resonance guided adaptive post prostatectomy radiotherapy: Accumulated dose comparison of different workflows. J Appl Clin Med Phys 2024; 25:e14253. [PMID: 38394627 PMCID: PMC11005979 DOI: 10.1002/acm2.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/26/2023] [Accepted: 12/06/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The aim of this study was to assess the use of magnetic resonance guided adaptive radiotherapy (MRgART) in the post-prostatectomy setting; comparing dose accumulation for our initial seven patients treated with fully adaptive workflow on the Unity MR-Linac (MRL) and with non-adaptive plans generated offline. Additionally, we analyzed toxicity in patients receiving treatment. METHODS Seven patients were treated with MRgART. The prescription was 70-72 Gy in 35-36 fractions. Patients were treated with an adapt to shape (ATS) technique. For each clinically delivered plan, a non-adaptive plan based upon the reference plan was generated and compared to the associated clinically delivered plan. A total of 468 plans were analyzed. Concordance Index of target and Organs at Risk (OARs) for each fraction with reference contours was analyzed. Acute toxicity was then assessed at six-months following completion of treatment with Common Terminology for Adverse Events (CTCAE) Toxicity Criteria. RESULTS A total of 246 fractions were clinically delivered to seven patients; 234 fractions were delivered via MRgART and 12 fractions delivered via a traditional linear accelerator due to machine issues. Pre-treatment reference plans met CTV and OAR criteria. PTV coverage satisfaction was higher in the clinically delivered adaptive plans than non-adaptive comparison plans; 42.93% versus 7.27% respectively. Six-month CTCAE genitourinary and gastrointestinal toxicity was absent in most patients, and mild-to-moderate in a minority of patients (Grade 1 GU toxicity in one patient and Grade 2 GI toxicity in one patient). CONCLUSIONS Daily MRgART treatment consistently met planning criteria. Target volume variability in prostate bed treatment can be mitigated by using MRgART and deliver satisfactory coverage of CTV whilst minimizing dose to adjacent OARs and reducing toxicity.
Collapse
Affiliation(s)
- Sean P. Hassan
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
| | | | - Vikneswary Batumalai
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Zoe Moutrie
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- South Western Sydney Cancer ServicesNew South Wales HealthSydneyAustralia
- Ingham Institute for Applied Medical ResearchSydneyAustralia
| | - Louise Hogan
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
- GenesisCareMurdochWestern AustraliaAustralia
| | - Yuanyuan Ge
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
| | - Phillip Stricker
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Western Sydney UniversityPenrithNew South WalesAustralia
- St Vincent's Prostate Cancer Research CentreDarlinghurstNew South WalesAustralia
- Garvan Institute, DarlinghurstSydneyNew South WalesAustralia
- University of SydneyCamperdownNew South WalesAustralia
| | - Michael G. Jameson
- GenesisCareSt Vincent's HospitalSydneyNew South WalesAustralia
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia
| |
Collapse
|
5
|
Sritharan K, Akhiat H, Cahill D, Choi S, Choudhury A, Chung P, Diaz J, Dysager L, Hall W, Huddart R, Kerkmeijer LGW, Lawton C, Mohajer J, Murray J, Nyborg CJ, Pos FJ, Rigo M, Schytte T, Sidhom M, Sohaib A, Tan A, van der Voort van Zyp J, Vesprini D, Zelefsky MJ, Tree AC. Development of Prostate Bed Delineation Consensus Guidelines for Magnetic Resonance Image-Guided Radiotherapy and Assessment of Its Effect on Interobserver Variability. Int J Radiat Oncol Biol Phys 2024; 118:378-389. [PMID: 37633499 DOI: 10.1016/j.ijrobp.2023.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE The use of magnetic resonance imaging (MRI) in radiotherapy planning is becoming more widespread, particularly with the emergence of MRI-guided radiotherapy systems. Existing guidelines for defining the prostate bed clinical target volume (CTV) show considerable heterogeneity. This study aimed to establish baseline interobserver variability (IOV) for prostate bed CTV contouring on MRI, develop international consensus guidelines, and evaluate its effect on IOV. METHODS AND MATERIALS Participants delineated the CTV on 3 MRI scans, obtained from the Elekta Unity MR-Linac, as per their normal practice. Radiation oncologist contours were visually examined for discrepancies, and interobserver comparisons were evaluated against simultaneous truth and performance level estimation (STAPLE) contours using overlap metrics (Dice similarity coefficient and Cohen's kappa), distance metrics (mean distance to agreement and Hausdorff distance), and volume measurements. A literature review of postradical prostatectomy local recurrence patterns was performed and presented alongside IOV results to the participants. Consensus guidelines were collectively constructed, and IOV assessment was repeated using these guidelines. RESULTS Sixteen radiation oncologists' contours were included in the final analysis. Visual evaluation demonstrated significant differences in the superior, inferior, and anterior borders. Baseline IOV assessment indicated moderate agreement for the overlap metrics while volume and distance metrics demonstrated greater variability. Consensus for optimal prostate bed CTV boundaries was established during a virtual meeting. After guideline development, a decrease in IOV was observed. The maximum volume ratio decreased from 4.7 to 3.1 and volume coefficient of variation reduced from 40% to 34%. The mean Dice similarity coefficient rose from 0.72 to 0.75 and the mean distance to agreement decreased from 3.63 to 2.95 mm. CONCLUSIONS Interobserver variability in prostate bed contouring exists among international genitourinary experts, although this is lower than previously reported. Consensus guidelines for MRI-based prostate bed contouring have been developed, and this has resulted in an improvement in contouring concordance. However, IOV persists and strategies such as an education program, development of a contouring atlas, and further refinement of the guidelines may lead to additional improvements.
Collapse
Affiliation(s)
- Kobika Sritharan
- Royal Marsden NHS Foundation Trust, Sutton, United Kingdom; Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, United Kingdom.
| | | | - Declan Cahill
- Department of Urology, Royal Marsden Hospital NHS Trust, London, United Kingdom
| | - Seungtaek Choi
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Ananya Choudhury
- Christie National Health Service Foundation Trust, Manchester, United Kingdom; University of Manchester, Manchester, United Kingdom
| | - Peter Chung
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Lars Dysager
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - William Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert Huddart
- Royal Marsden NHS Foundation Trust, Sutton, United Kingdom; Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, United Kingdom
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Colleen Lawton
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Julia Murray
- Royal Marsden NHS Foundation Trust, Sutton, United Kingdom; Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, United Kingdom
| | | | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, Italy
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mark Sidhom
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Aslam Sohaib
- Department of Radiology, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Alex Tan
- Sunshine Coast Hospital and Health Service, Queensland, Australia; James Cook University, Townsville, Queensland, Australia
| | | | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, Sutton, United Kingdom; Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
6
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
7
|
Almansour H, Schick F, Nachbar M, Afat S, Fritz V, Thorwarth D, Zips D, Bertram F, Müller AC, Nikolaou K, Othman AE, Wegener D. Longitudinal monitoring of Apparent Diffusion Coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiotherapy on an MR-Linac at 1.5 T: a prospective feasibility study. Radiol Oncol 2023; 57:184-190. [PMID: 37341194 DOI: 10.2478/raon-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hybrid MRI linear accelerators (MR-Linac) might enable individualized online adaptation of radiotherapy using quantitative MRI sequences as diffusion-weighted imaging (DWI). The purpose of this study was to investigate the dynamics of lesion apparent diffusion coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiation therapy (MRgRT) on a 1.5T MR-Linac. The ADC values at a diagnostic 3T MRI scanner were used as the reference standard. PATIENTS AND AND METHODS In this prospective single-center study, patients with biopsy-confirmed prostate cancer who underwent both an MRI exam at a 3T scanner (MRI3T) and an exam at a 1.5T MR-Linac (MRL) at baseline and during radiotherapy were included. Lesion ADC values were measured by a radiologist and a radiation oncologist on the slice with the largest lesion. ADC values were compared before vs. during radiotherapy (during the second week) on both systems via paired t-tests. Furthermore, Pearson correlation coefficient and inter-reader agreement were computed. RESULTS A total of nine male patients aged 67 ± 6 years [range 60 - 67 years] were included. In seven patients, the cancerous lesion was in the peripheral zone, and in two patients the lesion was in the transition zone. Inter-reader reliability regarding lesion ADC measurement was excellent with an intraclass correlation coefficient of (ICC) > 0.90 both at baseline and during radiotherapy. Thus, the results of the first reader will be reported. In both systems, there was a statistically significant elevation of lesion ADC during radiotherapy (mean MRL-ADC at baseline was 0.97 ± 0.18 × 10-3 mm2/s vs. mean MRL-ADC during radiotherapy 1.38 ± 0.3 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.41 ± 0.20 × 10-3 mm2/s, p < 0.001). Mean MRI3T-ADC at baseline was 0.78 ± 0.165 × 10-3 mm2/s vs. mean MRI3T-ADC during radiotherapy 0.99 ± 0.175 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.21 ± 0.96 × 10-3 mm2/s p < 0.001). The absolute ADC values from MRL were consistently significantly higher than those from MRI3T at baseline and during radiotherapy (p < = 0.001). However, there was a strong positive correlation between MRL-ADC and MRI3T-ADC at baseline (r = 0.798, p = 0.01) and during radiotherapy (r = 0.863, p = 0.003). CONCLUSIONS Lesion ADC as measured on MRL increased significantly during radiotherapy and ADC measurements of lesions on both systems showed similar dynamics. This indicates that lesion ADC as measured on the MRL may be used as a biomarker for evaluation of treatment response. In contrast, absolute ADC values as calculated by the algorithm of the manufacturer of the MRL showed systematic deviations from values obtained on a diagnostic 3T MRI system. These preliminary findings are promising but need large-scale validation. Once validated, lesion ADC on MRL might be used for real-time assessment of tumor response in patients with prostate cancer undergoing MR-guided radiation therapy.
Collapse
Affiliation(s)
- Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Fritz Schick
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Marcel Nachbar
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Victor Fritz
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Felix Bertram
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- Department of Radiation Oncology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|