1
|
Hassan FE, Aboulhoda BE, Mehesen MN, El Din PM, Abdallah HA, Bendas ER, Ahmed Rashed L, Mostafa A, Amer MF, Abdel-Rahman M, Alghamdi MA, Shams Eldeen AM. Combination therapy of systemic and local metformin improves imiquimod-induced psoriasis-like lesions with type 2 diabetes: the role of AMPK/KGF/STAT3 axis. Arch Physiol Biochem 2024:1-13. [PMID: 39446079 DOI: 10.1080/13813455.2024.2407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
CONTEXT Insulin resistance and a disturbed lipid profile are common associations with type 2 diabetes mellitus (T2DM) and different skin diseases, particularly psoriasis (PsO). OBJECTIVES We investigated potential therapeutic mechanisms of metformin in a murine animal model of psoriasiform lesions in T2DM. MATERIALS AND METHODS Forty-two rats were randomly divided into control, PsO, and type II DM (T2DM) groups. After confirmation of DM, the type II diabetic rats were allocated into T2DM+ PsO, T2DM+ PsO+ systemic metformin (S. met), T2DM+ PsO+ topical metformin (T. met)), and T2DM+ PsO + combined metformin (C. met). PsO was induced by topical imiquimod. RESULTS Systemic administration of the cornerstone antidiabetic drug, metformin, was able to improve insulin resistance and lipid profile. At molecular levels, both topical and systemic metformin significantly increased AMP-activated protein kinase (AMPK), and lowered keratinocyte growth factor (KGF) / "Signal transducer and activator of transcription" (STAT)3 protein levels, and the IL-17RA and IL-17RC gene expression. CONCLUSION Although its glucose-controlling effect was not optimum, T.met gel served anti-psoriatic and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Nagi Mehesen
- Department of Pharmacology, Faculty of Medicine, Cairo University, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | | | - Hend Ahmed Abdallah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Ehab R Bendas
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Abeer Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathy Amer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | | | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
3
|
Scala E, Mercurio L, Albanesi C, Madonna S. The Intersection of the Pathogenic Processes Underlying Psoriasis and the Comorbid Condition of Obesity. Life (Basel) 2024; 14:733. [PMID: 38929716 PMCID: PMC11204971 DOI: 10.3390/life14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the past decade, our understanding of psoriasis pathogenesis has made significant steps forward, leading to the development of multiple game-changing therapies. While psoriasis primarily affects the skin, it is increasingly recognized as a systemic disease that can have effects beyond the skin. Obesity is associated with more severe forms of psoriasis and can potentially worsen the systemic inflammation and metabolic dysfunction seen in psoriatic patients. The exact mechanisms underlying the link between these two conditions are not fully understood, but it is believed that chronic inflammation and immune dysregulation play a role. In this review, we examine the existing body of knowledge regarding the intersection of pathogenic processes responsible for psoriasis and obesity. The ability of biological therapies to reduce systemic and obesity-related inflammation in patients with psoriasis will be also discussed.
Collapse
|
4
|
Nazimek K, Bryniarski K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int J Mol Sci 2024; 25:5306. [PMID: 38791342 PMCID: PMC11121292 DOI: 10.3390/ijms25105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a systemic autoimmune/autoinflammatory disease that can be well studied in established mouse models. Skin-resident macrophages are classified into epidermal Langerhans cells and dermal macrophages and are involved in innate immunity, orchestration of adaptive immunity, and maintenance of tissue homeostasis due to their ability to constantly shift their phenotype and adapt to the current microenvironment. Consequently, both macrophage populations play dual roles in psoriasis. In some circumstances, pro-inflammatory activated macrophages and Langerhans cells trigger psoriatic inflammation, while in other cases their anti-inflammatory stimulation results in amelioration of the disease. These features make macrophages interesting candidates for modern therapeutic strategies. Owing to the significant progress in knowledge, our review article summarizes current achievements and indicates future research directions to better understand the function of macrophages in psoriasis.
Collapse
Affiliation(s)
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
5
|
Mehta H, Narang T, Dogra S, Handa S, Hatwal J, Batta A. Cardiovascular Considerations and Implications for Treatment in Psoriasis: An Updated Review. Vasc Health Risk Manag 2024; 20:215-229. [PMID: 38745849 PMCID: PMC11093123 DOI: 10.2147/vhrm.s464471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Psoriasis, a prevalent chronic inflammatory skin disorder affecting 2-3% of the global population, has transcended its dermatological confines, revealing a profound association with cardiovascular diseases (CVD). This comprehensive review explores the intricate interplay between psoriasis and cardiovascular system, delving into genetic links, immune pathways, and adipose tissue dysfunction beyond conventional CVD risk factors. The pathophysiological connections unveil unique signatures, distinct from other inflammatory skin conditions, in particular psoriasis-specific genetic polymorphisms in IL-23 and TNF-α have consistently been linked to CVD. The review navigates the complex landscape of psoriasis treatments, addressing challenges and future directions in particular relevance to CVDs in psoriasis. Therapeutic interventions, including TNF inhibitors (TNFi), present promise in reducing cardiovascular risks, and methotrexate could constitute a favourable choice. Conversely, the relationship between IL-12/23 inhibitors and cardiovascular risk remains uncertain, while recent evidence indicates that Janus kinase inhibitors may not carry CVD risks. Emerging evidence supports the safety and efficacy of IL-17 and IL-23 inhibitors in patients with CVDs, hinting at evolving therapeutic paradigms. Lifestyle modifications, statins, and emerging therapies offer preventive strategies. Dedicated screening guidelines for CVD risk assessment in psoriasis are however lacking. Further, the impact of different disease phenotypes and treatment hierarchies in cardiovascular outcomes remains elusive, demanding ongoing research at the intersection of dermatology, rheumatology, and cardiology. In conclusion, unraveling the intricate connections between psoriasis and CVD provides a foundation for a holistic approach to patient care. Collaboration between specialties, advancements in screening methodologies, and a nuanced understanding of treatment impacts are essential for comprehensive cardiovascular risk management in individuals with psoriasis.
Collapse
Affiliation(s)
- Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juniali Hatwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital (DMCH), Ludhiana, 141001, India
| |
Collapse
|
6
|
Srikanth M, Rasool M. Resistin - A Plausible Therapeutic Target in the Pathogenesis of Psoriasis. Immunol Invest 2024; 53:115-159. [PMID: 38054436 DOI: 10.1080/08820139.2023.2288836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.
Collapse
Affiliation(s)
- Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
7
|
Zhao S, Wu T, Fu M, Zhang Z. Histone Lactylation Participates in Psoriasis Progression by Regulating the Adiponectin Expression. Clin Cosmet Investig Dermatol 2024; 17:219-227. [PMID: 38292324 PMCID: PMC10826714 DOI: 10.2147/ccid.s450254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Background Psoriasis is a chronic inflammatory skin disease characterized by erythema, papules, and plaques. Adiponectin (ADIPOQ) is an important protein hormone secreted by adipose tissue. Here, we aimed to explore the expression of ADIPOQ in psoriasis patients and the moderation effect of histone lactylation on ADIPOQ. Methods The GSE78097 data set was downloaded from GEO database to analyze the differentially expressed genes (DEGs) in psoriasis. A total of 36 psoriasis patients were recruited to obtain the skin samples. The ADIPOQ protein levels, global lactylation and histone lactylation (H3K18lac) levels were detected by Western blot assay. Chromatin immunoprecipitation (CHIP) assay was performed to detect the combination between H3K18lac and promoter regions of the ADIPOQ. The receiver operating curve (ROC) analysis was used to evaluate the diagnostic value of ADIPOQ in psoriasis. Results ADIPOQ was decreased in the skin tissues of psoriasis patients. In addition, the global lactylation and H3K18lac levels were significantly decreased in the skin tissues of psoriasis patients. In HaCaT cells, promoting the global lactylation and H3K18lac levels increased the ADIPOQ protein levels, while si-LDHA transfection decreased the ADIPOQ protein levels. The CHIP results indicated that lactylation promoted the binding of promoter regions of the ADIPOQ and H3K18lac. Finally, the ROC analysis showed that ADIPOQ exhibited diagnostic value in psoriasis. Conclusion This study demonstrated ADIPOQ was decreased in the skin tissues of psoriasis patients, and ADIPOQ has diagnostic value for psoriasis. Furthermore, down-regulation of H3K18lac levels inhibited the transcription of ADIPOQ, which was the key factor of decrease of ADIPOQ levels in psoriasis patients.
Collapse
Affiliation(s)
- Sicheng Zhao
- Department of Dermatology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, People’s Republic of China
| | - Tingyan Wu
- Department of Dermatology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, People’s Republic of China
| | - Mingjing Fu
- Department of Dermatology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, People’s Republic of China
| | - Zhe Zhang
- Department of Dermatology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, People’s Republic of China
| |
Collapse
|
8
|
Su R, Zhao S, Zhang J, Cao M, Peng S. Metabolic influences on T cell in psoriasis: a literature review. Front Immunol 2023; 14:1279846. [PMID: 38035065 PMCID: PMC10684739 DOI: 10.3389/fimmu.2023.1279846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease that frequently coexists with various other conditions, such as essential hypertension, diabetes, metabolic syndrome, and inflammatory bowel disease. The association between these diseases may be attributed to shared inflammatory pathways and abnormal immunomodulatory mechanisms. Furthermore, metabolites also play a regulatory role in the function of different immune cells involved in psoriasis pathogenesis, particularly T lymphocytes. In this review, we have summarized the current research progress on T cell metabolism in psoriasis, encompassing the regulation of metabolites in glucose metabolism, lipid metabolism, amino acid metabolism, and other pathways within T cells affected by psoriasis. We will also explore the interaction and mechanism between psoriatic metabolites and immune cells. Moreover, we further discussed the research progress of metabolomics in psoriasis to gain a deeper understanding of its pathogenesis and identify potential new therapeutic targets through identification of metabolic biomarkers associated with this condition.
Collapse
Affiliation(s)
- Rina Su
- *Correspondence: Shiguang Peng, ; Rina Su,
| | | | | | | | - Shiguang Peng
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Takezaki D, Morizane S, Ikeda K, Iseki M, Sakamoto Y, Kawakami Y, Hashiguchi T, Shirakata Y, Nishina S, Mukai T. Co-occurrence of non-alcoholic steatohepatitis exacerbates psoriasis associated with decreased adiponectin expression in a murine model. Front Immunol 2023; 14:1214623. [PMID: 37646025 PMCID: PMC10461570 DOI: 10.3389/fimmu.2023.1214623] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Clinical studies have suggested a bidirectional association between non-alcoholic steatohepatitis (NASH) and psoriasis, affecting each other's development and severity. Here, we explored bidirectional causal linkages between NASH and psoriasis using a murine model. Methods NASH was induced in mice by streptozotocin injection at 2 days of age and by high-fat diet feeding (STAM™ model). Psoriasis was induced by topical application of imiquimod (IMQ) on the ear. The severities of liver damage and psoriatic skin changes were determined using histological analysis. Gene expression in the skin tissues was evaluated using quantitative PCR analysis. Serum cytokine levels were determined using enzyme-linked immunosorbent assay. To examine the innate immune responses of normal human epidermal keratinocytes (NHEKs), the cells were treated with interleukin (IL)-17A, tumor necrosis factor (TNF)-α, and AdipoRon, an adiponectin receptor agonist. Results and Discussion There were no differences in the degree of liver tissue damage (fat deposition, inflammation, and fibrosis) between NASH mice with and those without psoriasis. Conversely, the co-occurrence of NASH significantly augmented psoriatic skin changes, represented by epidermal hyperplasia, in psoriatic mice. Pro-inflammatory cytokines were expressed in the inflamed skin of psoriatic mice, and the expression of genes, especially Il23a, Il1b, Il36g, and Mip2, was significantly upregulated by the co-occurrence of NASH. The expression of keratinocyte activation marker genes Defb4b and Krt16 was also upregulated by the co-occurrence of NASH. The serum TNF-α and IL-17 levels were increased by the co-occurrence of NASH and psoriasis. The serum adiponectin levels decreased in NASH mice compared with that in non-NASH mice. In NHEK culture, TNF-α and IL-17A synergistically upregulated CXCL1, CXCL8, and IL1B expression. The upregulated pro-inflammatory gene expression was suppressed by AdipoRon treatment, reflecting the anti-inflammatory capacity of adiponectin. Conclusion The co-occurrence of NASH exacerbated psoriatic skin changes associated with increased serum inflammatory cytokine levels and decreased serum adiponectin levels. Combined with in vitro findings, increased inflammatory cytokine levels and decreased adiponectin levels likely promote innate immune responses in epidermal keratinocytes in psoriatic skin lesions. Overall, therapeutic intervention for co-occurring NASH is essential to achieve a favorable prognosis of psoriasis in clinical practice.
Collapse
Affiliation(s)
- Daiki Takezaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, National Hospital Organization Iwakuni Clinical Center, Yamaguchi, Japan
| | - Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Yuma Sakamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Kawakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | - Sohji Nishina
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
10
|
Constantin C, Surcel M, Munteanu A, Neagu M. Insights into Nutritional Strategies in Psoriasis. Nutrients 2023; 15:3528. [PMID: 37630719 PMCID: PMC10458768 DOI: 10.3390/nu15163528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis, an autoimmune chronic inflammatory skin condition, has a high incidence in the general population, reaching 2-4%. Its pathogenesis involves an interplay of genetic factors, immune disturbances, and environmental factors. Within the environmental factors that aid the appearance of this autoimmune skin disease, the Western lifestyle and overall diet play important roles in the steady growth in psoriasis prevalence. Furthermore, psoriasis is associated with comorbidities such as psoriatic arthritis, cardiovascular disease, metabolic syndrome, and obesity. Accumulating evidence suggests that obesity is an important risk factor for psoriasis. Moreover, obesity aggravates established psoriasis, and a reduction in the body mass index can improve the clinical outcomes of psoriasis and increase the efficacy of standard psoriasis therapies. The possible connection between this autoimmune disease and obesity relies on the fact that white adipose tissue is an essential endocrine organ that secretes an array of immune mediators and inflammatory and metabolic factors with pro-inflammatory action. Thus, immune-mediated mechanisms in both psoriasis and obesity conditions are common factors. This paper describes the factors that link obesity with skin autoimmune disease and highlights the importance of the stimulatory or regulatory effects of nutrients and food in psoriasis and the possible improvement of psoriasis through nutritional strategies.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.)
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.)
| | - Adriana Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.)
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.)
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Doctoral School, Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| |
Collapse
|
11
|
Cruz CJG, Yang CC. Clinical application of serum biomarkers for detecting and monitoring of chronic plaque psoriasis. Front Mol Biosci 2023; 10:1196323. [PMID: 37546687 PMCID: PMC10403288 DOI: 10.3389/fmolb.2023.1196323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Psoriasis, a chronic, multisystemic inflammatory disease affecting millions of people globally, manifests as erythematous, thick, scaly plaques on the skin. Clinical evaluation remains to be the benchmark for diagnosis and monitoring of this debilitating disease. With current advancements in targeted molecular therapy for psoriasis such as biologics, molecular detection methods may also help guide clinical decisions and therapeutic strategies through quantification of circulating biomarkers, which could reflect the underlying pathogenic events happening at a certain point of the disease course. In this review, we will discuss how biomarkers are detected in serum samples using enzyme-linked immunosorbent assay (ELISA). This review will feature candidate biomarkers supported by clinical data for psoriasis including, but not limited to, cytokines, chemokines, adipokines, and antimicrobial peptides. A better understanding of the common method used for biomarker detection would enable physicians to interpret and correlate laboratory results with the disease pathogenesis and clinical outcomes, e.g., severity assessment and/or therapeutic response. With better health outcomes as the main goal, the utility of such information to evaluate and even predict treatment response would be a major step closer towards patient-tailored management.
Collapse
Affiliation(s)
- Criselda Jean G. Cruz
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|