1
|
Cauda F, Manuello J, Crocetta A, Duca S, Costa T, Liloia D. Meta-analytic connectivity perturbation analysis (MACPA): a new method for enhanced precision in fMRI connectivity analysis. Brain Struct Funct 2024; 230:17. [PMID: 39718568 DOI: 10.1007/s00429-024-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Co-activation of distinct brain areas provides a valuable measure of functional interaction, or connectivity, between them. One well-validated way to investigate the co-activation patterns of a precise area is meta-analytic connectivity modeling (MACM), which performs a seed-based meta-analysis on task-based functional magnetic resonance imaging (task-fMRI) data. While MACM stands as a powerful automated tool for constructing robust models of whole-brain human functional connectivity, its inherent limitation lies in its inability to capture the distinct interrelationships among multiple brain regions. Consequently, the connectivity patterns highlighted through MACM capture the direct relationship of the seed region with third brain regions, but also a (less informative) residual relationship between the third regions themselves. As a consequence of this, this technique does not allow to evaluate to what extent the observed connectivity pattern is really associated with the fact that the seed region is activated, or it just reflects spurious co-activations unrelated with it. In order to overcome this methodological gap, we introduce a meta-analytic Bayesian-based method, called meta-analytic connectivity perturbation analysis (MACPA), that allows to identify the unique contribution of a seed region in shaping whole-brain connectivity. We validate our method by analyzing one of the most complex and dynamic structures of the human brain, the amygdala, indicating that MACPA may be especially useful for delineating region-wise co-activation networks.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy.
- Move'N'Brains Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, Ren C, Yang Z, Zhao Z. Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity. Nat Commun 2024; 15:9442. [PMID: 39487147 PMCID: PMC11530632 DOI: 10.1038/s41467-024-53720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Although intracranial neural electrodes have significantly contributed to both fundamental research and clinical treatment of neurological diseases, their implantation requires invasive surgery to open craniotomies, which can introduce brain damage and disrupt normal brain functions. Recent emergence of endovascular neural devices offers minimally invasive approaches for neural recording and stimulation. However, existing endovascular neural devices are unable to resolve single-unit activity in large animal models or human patients, impeding a broader application as neural interfaces in clinical practice. Here, we present the ultraflexible implantable neural electrode as an intravascular device (uFINE-I) for recording brain activity at single-unit resolution. We successfully implanted uFINE-Is into the sheep occipital lobe by penetrating through the confluence of sinuses and recorded both local field potentials (LFPs) and multi-channel single-unit spiking activity under spontaneous and visually evoked conditions. Imaging and histological analysis revealed minimal tissue damage and immune response. The uFINE-I provides a practical solution for achieving high-resolution neural recording with minimal invasiveness and can be readily transferred to clinical settings for future neural interface applications such as brain-machine interfaces (BMIs) and the treatment of neurological diseases.
Collapse
Affiliation(s)
- Xingzhao Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shun Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hantao Yang
- Shanghai Geriatric Medical Center, Shanghai, China
- Zhongshan Hospital, Shanghai, China
| | - Yu Bao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- Fudan University, Shanghai, China
| | - Changchun Gan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Junyan Cao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Wang
- Zhongshan Hospital, Shanghai, China
- Fudan University, Shanghai, China
| | - Chi Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | | | - Zhengtuo Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Dhawan V, Martin PN, Hu X, Cui XT. Investigation of a chondroitin sulfate-based bioactive coating for neural interface applications. J Mater Chem B 2024; 12:5535-5550. [PMID: 38747002 PMCID: PMC11152038 DOI: 10.1039/d4tb00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Paige Nicole Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Maia JM, de Oliveira BSA, Branco LGS, Soriano RN. Therapeutic potential of psychedelics: History, advancements, and unexplored frontiers. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110951. [PMID: 38307161 DOI: 10.1016/j.pnpbp.2024.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics (serotonergic hallucinogens) are psychoactive substances that can alter perception and mood, and affect cognitive functions. These substances activate 5-HT2A receptors and may exert therapeutic effects. Some of the disorders for which psychedelic-assisted therapy have been studied include depression, addiction, anxiety and post-traumatic stress disorder. Despite the increasing number of studies reporting clinical effectiveness, with fewer negative symptoms and, additionally, minimal side effects, questions remain to be explored in the field of psychedelic medicine. Although progress has been achieved, there is still little understanding of the relationship among human brain and the modulation induced by these drugs. The present article aimed to describe, review and highlight the most promising findings in the literature regarding the (putative) therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil
| |
Collapse
|
5
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|