1
|
Bubeck F, Tomalka A, Siebert T, Röhrle O, Gizzi L. Altered muscle fibre activation in an antagonistic muscle pair due to perturbed afferent feedback caused by blood flow restriction. J Electromyogr Kinesiol 2024; 79:102922. [PMID: 39244815 DOI: 10.1016/j.jelekin.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE This study aimed to better understand the coping strategy of the neuromuscular system under perturbed afferent feedback. To this end, the neuromechanical effects of transient blood flow restriction (BFR) compared to atmospheric pressure were investigated in an antagonistic muscle pair. METHODS Perceived discomfort and neuromechanical parameters (torque and high-density electromyography) were recorded during submaximal isometric ankle dorsiflexion before, during and after BFR. The tibialis anterior and gastrocnemius lateralis muscles were studied in 14 healthy young adults. RESULTS Discomfort increased during BFR and decreased to baseline level afterwards. The exerted torque and the co-activation index remained constant, whereas the EMG signal energy increased significantly during BFR. Coherence analysis of the delta band remained constant, whereas the alpha band shows an increase during BFR. Median frequency and muscle fibre conduction velocity showed a positive trend during the first minutes of BFR before significantly decreasing. Both parameters exceeded baseline values after cuff deflation. CONCLUSION Perturbed afferent feedback leads to altered neuromechanical parameters. We assume that increased central drive is required to maintain force output, resulting in changed muscle fibre activity. Glycolytic fast-switch fibres are only active for a short time due to oxygen deprivation and hyperacidity, but fatigue effects predominate in the long term.
Collapse
Affiliation(s)
- Franziska Bubeck
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany.
| | - André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany; Department of Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany
| |
Collapse
|
2
|
Uematsu A, Mizushima Y, Ishizaka H, Hortobágyi T, Mizushima T, Toyoda S, Nakajima T. Blood flow restriction reduces the increases in cardiorespiratory responses and subjective burden without inhibiting muscular activity during cycling at ventilatory threshold in healthy males. PLoS One 2023; 18:e0294524. [PMID: 38064463 PMCID: PMC10707540 DOI: 10.1371/journal.pone.0294524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Low-intensity endurance exercise with blood flow restriction (KAATSU) is under consideration for use in cardiac rehabilitation. However, the physiological responses to such exercise have not yet been fully characterized. In an initial effort in healthy males (n = 11, age: 26.3±4.6 y), we compared the physiological responses to low-intensity endurance exercise with and without a thigh KAATSU. Participants performed maximal graded exercise testing using a cycle ergometer with or without KAATSU. We examined responses to cycling exercise at ventilatory threshold (VT) in heart rate (HR), oxygen consumption (VO2), dyspnea, ratings of perceived exertion (RPE), blood pressure (BP), and rectus femoris activation. Participants reached VT at a lower mechanical load, HR, VO2, dyspnea, and double product (HR×systolic BP) with KAATSU vs. no-KAATSU. At VT, RPE, and rectus femoris activity did not differ between the two conditions. These results suggest that KAATSU reduced exercise intensity to reach VT and the physiological responses to exercise at VT without changes in knee extensor muscle activation. Results from this pilot study in healthy males suggest that KAATSU aerobic exercise at VT intensity has the potential to be an effective and low-burden adjuvant to cycling in cardiac rehabilitation.
Collapse
Affiliation(s)
- Azusa Uematsu
- Faculty of Sociology, Otemon Gakuin University, Nishiai, Ibaraki, Osaka, Japan
| | - Yuta Mizushima
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Hayato Ishizaka
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Alkotás utca, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság úutja, Pécs, Hungary
- Somogy Country Kaposi Mór Teaching Hospital, Tallián Gyula utca, Kaposvár, Hungary
- Center for Human Movement Sciences, University of Groningen, A. Deusinglaan, Groningen, The Netherlands
| | - Takashi Mizushima
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
- Department of Medical KAATSU Training, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
3
|
Wedig IJ, Durocher JJ, McDaniel J, Elmer SJ. Blood flow restriction as a potential therapy to restore physical function following COVID-19 infection. Front Physiol 2023; 14:1235172. [PMID: 37546539 PMCID: PMC10400776 DOI: 10.3389/fphys.2023.1235172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Accumulating evidence indicates that some COVID-19 survivors display reduced muscle mass, muscle strength, and aerobic capacity, which contribute to impairments in physical function that can persist for months after the acute phase of illness. Accordingly, strategies to restore muscle mass, muscle strength, and aerobic capacity following infection are critical to mitigate the long-term consequences of COVID-19. Blood flow restriction (BFR), which involves the application of mechanical compression to the limbs, presents a promising therapy that could be utilized throughout different phases of COVID-19 illness. Specifically, we hypothesize that: 1) use of passive BFR modalities can mitigate losses of muscle mass and muscle strength that occur during acute infection and 2) exercise with BFR can serve as an effective alternative to high-intensity exercise without BFR for regaining muscle mass, muscle strength, and aerobic capacity during convalescence. The various applications of BFR may also serve as a targeted therapy to address the underlying pathophysiology of COVID-19 and provide benefits to the musculoskeletal system as well as other organ systems affected by the disease. Consequently, we present a theoretical framework with which BFR could be implemented throughout the progression from acute illness to outpatient rehabilitation with the goal of improving short- and long-term outcomes in COVID-19 survivors. We envision that this paper will encourage discussion and consideration among researchers and clinicians of the potential therapeutic benefits of BFR to treat not only COVID-19 but similar pathologies and cases of acute critical illness.
Collapse
Affiliation(s)
- Isaac J. Wedig
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, United States
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
4
|
Angelopoulos P, Tsekoura M, Mylonas K, Tsigkas G, Billis E, Tsepis E, Fousekis K. The effectiveness of blood flow restriction training in cardiovascular disease patients: A scoping review. J Frailty Sarcopenia Falls 2023; 8:107-117. [PMID: 37275660 PMCID: PMC10233322 DOI: 10.22540/jfsf-08-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/07/2023] Open
Abstract
Therapeutic exercise is integral to the comprehensive rehabilitation of patients with cardiovascular disease and, as such, is recommended by the American Heart Association as a valuable and effective treatment method for such patients. The type of exercise applied to these patients is aerobic and resistance exercise with mild intensities and loads to avoid overloading the cardiovascular system. Blood flow restriction exercise is a novel exercise modality in clinical settings that has in many studies a similar effect on muscle hypertrophy, strength, and cardiovascular response to training at a 70% strength level without blood flow restriction. Since this exercise mode does not require high-intensity loads, it can be a safe method for improving muscle strength, cardiovascular endurance, and functionality in cardiovascular patients. Given that, the objective of this review is to assess and summarize existing evidence for the use of blood flow restriction in cardiovascular patients. A scoping review of existing clinical trials was conducted. Eleven studies were examined that suggested the use of blood flow restrictions in cardiovascular patients to achieve improvements in muscle strength, functionality, and cardiovascular parameters such as blood pressure decrease.
Collapse
Affiliation(s)
- Pavlos Angelopoulos
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| | - Maria Tsekoura
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| | - Konstantinos Mylonas
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| | - Grigorios Tsigkas
- Department of Pathology, School of Health Sciences, University of Patras, Rio, Greece
| | - Evdokia Billis
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| | - Elias Tsepis
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| | - Konstantinos Fousekis
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, Greece
| |
Collapse
|
5
|
Makita S, Yasu T, Akashi YJ, Adachi H, Izawa H, Ishihara S, Iso Y, Ohuchi H, Omiya K, Ohya Y, Okita K, Kimura Y, Koike A, Kohzuki M, Koba S, Sata M, Shimada K, Shimokawa T, Shiraishi H, Sumitomo N, Takahashi T, Takura T, Tsutsui H, Nagayama M, Hasegawa E, Fukumoto Y, Furukawa Y, Miura SI, Yasuda S, Yamada S, Yamada Y, Yumino D, Yoshida T, Adachi T, Ikegame T, Izawa KP, Ishida T, Ozasa N, Osada N, Obata H, Kakutani N, Kasahara Y, Kato M, Kamiya K, Kinugawa S, Kono Y, Kobayashi Y, Koyama T, Sase K, Sato S, Shibata T, Suzuki N, Tamaki D, Yamaoka-Tojo M, Nakanishi M, Nakane E, Nishizaki M, Higo T, Fujimi K, Honda T, Matsumoto Y, Matsumoto N, Miyawaki I, Murata M, Yagi S, Yanase M, Yamada M, Yokoyama M, Watanabe N, Ito H, Kimura T, Kyo S, Goto Y, Nohara R, Hirata KI. JCS/JACR 2021 Guideline on Rehabilitation in Patients With Cardiovascular Disease. Circ J 2022; 87:155-235. [PMID: 36503954 DOI: 10.1253/circj.cj-22-0234] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shigeru Makita
- Department of Cardiac Rehabilitation, Saitama Medical University International Medical Center
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Yoshihiro J Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Hitoshi Adachi
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Hideo Izawa
- Department of Cardiology, Fujita Health University of Medicine
| | - Shunichi Ishihara
- Department of Psychology, Bunkyo University Faculty of Human Sciences
| | - Yoshitaka Iso
- Division of Cardiology, Showa University Fujigaoka Hospital
| | - Hideo Ohuchi
- Department of Pediatrics, National Cerebral and Cardiovascular Center
| | | | - Yusuke Ohya
- Department of Cardiovascular Medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus
| | - Koichi Okita
- Graduate School of Lifelong Sport, Hokusho University
| | - Yutaka Kimura
- Department of Health Sciences, Kansai Medical University Hospital
| | - Akira Koike
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kazunori Shimada
- Department of Cardiology, Juntendo University School of Medicine
| | | | - Hirokazu Shiraishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | - Tetsuya Takahashi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University
| | - Tomoyuki Takura
- Department of Healthcare Economics and Health Policy, Graduate School of Medicine, The University of Tokyo
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | | | - Emiko Hasegawa
- Faculty of Psychology and Social Welfare, Seigakuin University
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Yutaka Furukawa
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital
| | | | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Sumio Yamada
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine
| | - Yuichiro Yamada
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital
| | | | | | - Takuji Adachi
- Department of Physical Therapy, Nagoya University Graduate School of Medicine
| | | | | | | | - Neiko Ozasa
- Cardiovascular Medicine, Kyoto University Hospital
| | - Naohiko Osada
- Department of Physical Checking, St. Marianna University Toyoko Hospital
| | - Hiroaki Obata
- Division of Internal Medicine, Niigata Minami Hospital.,Division of Rehabilitation, Niigata Minami Hospital
| | | | - Yusuke Kasahara
- Department of Rehabilitation, St. Marianna University Yokohama Seibu Hospital
| | - Masaaki Kato
- Department of Cardiovascular Surgery, Morinomiya Hospital
| | - Kentaro Kamiya
- Department of Rehabilitation, School of Allied Health Sciences, Kitasato University
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Yuji Kono
- Department of Rehabilitation, Fujita Health University Hospital
| | - Yasuyuki Kobayashi
- Department of Medical Technology, Gunma Prefectural Cardiovascular Center
| | | | - Kazuhiro Sase
- Clinical Pharmacology and Regulatory Science, Graduate School of Medicine, Juntendo University
| | - Shinji Sato
- Department of Physical Therapy, Teikyo Heisei University
| | - Tatsuhiro Shibata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Norio Suzuki
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Daisuke Tamaki
- Department of Nutrition, Showa University Fujigaoka Hospital
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, School of Allied Health Sciences, Kitasato University
| | - Michio Nakanishi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | - Mari Nishizaki
- Department of Rehabilitation, National Hospital Organization Okayama Medical Center
| | - Taiki Higo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kanta Fujimi
- Department of Rehabilitation, Fukuoka University Hospital
| | - Tasuku Honda
- Department of Cardiovascular Surgery, Hyogo Brain and Heart Center
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Shioya Hospital, International University of Health and Welfare
| | | | - Ikuko Miyawaki
- Department of Nursing, Kobe University Graduate School of Health Sciences
| | - Makoto Murata
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masanobu Yanase
- Department of Transplantation, National Cerebral and Cardiovascular Center
| | | | - Miho Yokoyama
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | | | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Syunei Kyo
- Tokyo Metropolitan Geriatric Medical Center
| | | | | | - Ken-Ichi Hirata
- Department of Internal Medicine, Kobe University Graduate School of Medicine
| | | |
Collapse
|
6
|
Cahalin LP, Formiga MF, Owens J, Anderson B, Hughes L. Beneficial Role of Blood Flow Restriction Exercise in Heart Disease and Heart Failure Using the Muscle Hypothesis of Chronic Heart Failure and a Growing Literature. Front Physiol 2022; 13:924557. [PMID: 35874535 PMCID: PMC9296815 DOI: 10.3389/fphys.2022.924557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Blood flow restriction exercise (BFRE) has become a common method to increase skeletal muscle strength and hypertrophy for individuals with a variety of conditions. A substantial literature of BFRE in older adults exists in which significant gains in strength and functional performance have been observed without report of adverse events. Research examining the effects of BFRE in heart disease (HD) and heart failure (HF) appears to be increasing for which reason the Muscle Hypothesis of Chronic Heart Failure (MHCHF) will be used to fully elucidate the effects BFRE may have in patients with HD and HF highlighted in the MHCHF.Methods: A comprehensive literature review was performed in PubMed and the Cochrane library through February 2022. Inclusion criteria were: 1) the study was original research conducted in human subjects older than 18 years of age and diagnosed with either HD or HF, 2) study participants performed BFRE, and 3) post-intervention outcome measures of cardiovascular function, physical performance, skeletal muscle function and structure, and/or systemic biomarkers were provided. Exclusion criteria included review articles and articles on viewpoints and opinions of BFRE, book chapters, theses, dissertations, and case study articles.Results: Seven BFRE studies in HD and two BFRE studies in HF were found of which four of the HD and the two HF studies examined a variety of measures reflected within the MHCHF over a period of 8–24 weeks. No adverse events were reported in any of the studies and significant improvements in skeletal muscle strength, endurance, and work as well as cardiorespiratory performance, mitochondrial function, exercise tolerance, functional performance, immune humoral function, and possibly cardiac performance were observed in one or more of the reviewed studies.Conclusion: In view of the above systematic review, BFRE has been performed safely with no report of adverse event in patients with a variety of different types of HD and in patients with HF. The components of the MHCHF that can be potentially improved with BFRE include left ventricular dysfunction, inflammatory markers, inactivity, a catabolic state, skeletal and possibly respiratory muscle myopathy, dyspnea and fatigue, ANS activity, and peripheral blood flow. Furthermore, investigation of feasibility, acceptability, adherence, adverse effects, and symptoms during and after BFRE is needed since very few studies have examined these important issues comprehensively in patients with HD and HF.
Collapse
Affiliation(s)
- Lawrence P. Cahalin
- Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Lawrence P. Cahalin,
| | - Magno F. Formiga
- Departamento de Fisioterapia, Faculdade de Medicina, Universidade Federal Do Ceará, Fortaleza, Brazil
| | - Johnny Owens
- Owens Recovery Science, San Antonio, TX, United States
| | - Brady Anderson
- Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Northumbria, United Kingdom
| |
Collapse
|
7
|
Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. BIOLOGY 2021; 11:biology11010051. [PMID: 35053049 PMCID: PMC8773430 DOI: 10.3390/biology11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Sarcopenia is an inevitable component of aging. It is officially recognized as a muscle disease with an ICD-10-MC diagnosis code that can be used to bill for care in some countries. Sarcopenia can be classified into primary or age-related sarcopenia and secondary sarcopenia. The condition is referred to as secondary sarcopenia when any other comorbidities are present in conjunction with aging. Secondary sarcopenia is more prevalent than primary sarcopenia and requires special attention. Exercise interventions may help in our understanding and prevention of sarcopenia with a specific morbidity Glomerular filtration rate that exercise improves muscle mass, quality or physical function in elderly subjects with cancer, type 2 diabetes, kidney diseases and lung diseases. In this review, we summarize recent research that has studied the impact of exercise on patients with secondary sarcopenia, specifically those with one comorbid condition. We did not discover any exercise intervention specifically for subjects with secondary sarcopenia (with one comorbidity). Even though there is a strong argument for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney diseases, lung diseases and many more, very few studies have reported baseline sarcopenia assessments. Based on the trials summarized in this review, we may propose but not conclude that resistance, aerobic, balance training or even walking can be useful in subjects with secondary sarcopenia with only one comorbidity due to the limited number of trials. This review is significant because it reveals the need for broad-ranging research initiatives involving secondary sarcopenic patients and highlights a large secondary sarcopenia research gap. Abstract Background: Sarcopenia has been recognized as an inevitable part of aging. However, its severity and the age at which it begins cannot be predicted by age alone. The condition can be categorized into primary or age-related sarcopenia and secondary sarcopenia. Sarcopenia is diagnosed as primary when there are no other specific causes. However, secondary sarcopenia occurs if other factors, including malignancy or organ failure, are evident in addition to aging. The prevalence of secondary sarcopenia is far greater than that of primary sarcopenia and requires special attention. To date, nutrition and exercise have proven to be the best methods to combat this disease. The impact of exercise on subjects suffering from sarcopenia with a specific morbidity is worthy of examination for understanding and prevention. The purpose of this review, therefore, is to summarize recent research that has investigated the impact of exercise in patients with secondary sarcopenia, specifically with one comorbidity. Methods: Pubmed, Web of Science, Embase and Medline databases were searched comprehensively with no date limit for randomized controlled trials. The literature was specifically searched for clinical trials in which subjects were sarcopenic with only one comorbidity participating in an exercise intervention. The most visible comorbidities identified and used in the search were lung disease, kidney disease, heart disease, type 2 diabetes, cancer, neurological diseases, osteoporosis and arthritis. Results: A total of 1752 studies were identified that matched the keywords. After removing duplicates, there were 1317 articles remaining. We extracted 98 articles for full screening. Finally, we included 21 relevant papers that were used in this review. Conclusion: Despite a strong rationale for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney disease, lung disease and many more, baseline sarcopenia evaluation has been reported in very few trials. The limited number of studies does not allow us to conclude that exercise can improve sarcopenia in patients with other comorbidities. This review highlights the necessity for wide-ranging research initiatives involving secondary sarcopenic patients.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
- Correspondence:
| | - Kumar Purnendu Singh
- FEBT, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani 12120, Thailand;
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| |
Collapse
|
8
|
Cerqueira MS, Maciel DG, Barboza JAM, Centner C, Lira M, Pereira R, De Brito Vieira WH. Effects of low-load blood flow restriction exercise to failure and non-failure on myoelectric activity: a meta-analysis. J Athl Train 2021; 57:402-417. [PMID: 34038945 DOI: 10.4085/1062-6050-0603.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To compare the short- and long-term effects of low load blood flow restriction (LL-BFR) versus low- (LL-RT) or high-load (HL-RT) resistance training with free blood flow on myoelectric activity, and investigate the differences between failure and non-failure protocols. DATA SOURCE We identified sources by searching the MEDLINE/PUBMED, CINAHL, WEB OF SCIENCE, CENTRAL, SCOPUS, SPORTDiscus, and PEDro electronic databases. STUDY SELECTION We screened titles and abstracts of 1048 articles using our inclusion criteria. A total of 39 articles were selected for further analysis. DATA EXTRACTION Two reviewers independently assessed the methodological quality of each study and extracted data from studies. A meta-analytic approach was used to compute standardized mean differences (SMD ± 95% confidence intervals (CI)). Subgroup analyses were conducted for both failure or non-failure protocols. DATA SYNTHESIS The search identified n = 39 articles that met the inclusion criteria. Regarding the short-term effects, LL-BFR increased muscle excitability compared with LL-RT during non-failure exercises (SMD 0.61, 95% CI 0.34 to 0.88), whereas HL-RT increased muscle excitability compared with LL-BFR regardless of voluntary failure (SMD -0.61, 95% CI -1.01 to 0.21) or not (SMD -1.13, CI -1.94 to -0.33). Concerning the long-term effects, LL-BFR increased muscle excitability compared with LL-RT during exercises performed to failure (SMD 1.09, CI 0.39 to 1.79). CONCLUSIONS Greater short-term muscle excitability levels are observed in LL-BFR than LL-RT during non-failure protocols. Conversely, greater muscle excitability is present during HL-RT compared with LL-BFR, regardless of volitional failure. Furthermore, LL-BFR performed to failure increases muscle excitability in the long-term compared with LL-RT.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Daniel Germano Maciel
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Jean Artur Mendonça Barboza
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany; Praxisklinik Rennbahn, Muttenz, Switzerland,
| | - Maria Lira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil,
| | - Wouber Hérickson De Brito Vieira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| |
Collapse
|
9
|
Gizzi L, Yavuz UŞ, Hillerkuss D, Geri T, Gneiting E, Domeier F, Schmitt S, Röhrle O. Variations in Muscle Activity and Exerted Torque During Temporary Blood Flow Restriction in Healthy Individuals. Front Bioeng Biotechnol 2021; 9:557761. [PMID: 33816445 PMCID: PMC8017222 DOI: 10.3389/fbioe.2021.557761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure—AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure—LP) or 1.3 times the systolic pressure (higher pressure—HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction—MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography—HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain—for the torque, and average RMS, median frequency and average muscle fibres conduction velocity—for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5–15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.
Collapse
Affiliation(s)
- Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Utku Ş Yavuz
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, University of Twente, Enschede, Netherlands
| | - Dominic Hillerkuss
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Tommaso Geri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Elena Gneiting
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Franziska Domeier
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Ogawa H, Nakajima T, Shibasaki I, Nasuno T, Kaneda H, Katayanagi S, Ishizaka H, Mizushima Y, Uematsu A, Yasuda T, Yagi H, Toyoda S, Hortobágyi T, Mizushima T, Inoue T, Fukuda H. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J Clin Med 2021; 10:547. [PMID: 33540756 PMCID: PMC7867301 DOI: 10.3390/jcm10030547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
We examined the safety and the effects of low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT) on muscle strength and size in patients early after cardiac surgery. Cardiac patients (age 69.6 ± 12.6 years, n = 21, M = 18) were randomly assigned to the control (n = 10) and the KAATSU RT group (n = 11). All patients had received a standard aerobic cardiac rehabilitation program. The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually. We evaluated the anterior mid-thigh thickness (MTH), skeletal muscle mass index (SMI), handgrip strength, knee extensor strength, and walking speed at baseline, 5-7 days after cardiac surgery, and after 3 months. A physician monitored the electrocardiogram, rate of perceived exertion, and the color of the lower limbs during KAATSU RT. Creatine phosphokinase (CPK) and D-dimer were measured at baseline and after 3 months. There were no side effects during KAATSU RT. CPK and D-dimer were normal after 3 months. MTH, SMI, walking speed, and knee extensor strength increased after 3 months with KAATSU RT compared with baseline. Relatively low vs. high physical functioning patients tended to increase physical function more after 3 months with KAATSU RT. Low-intensity KAATSU RT as an adjuvant to standard cardiac rehabilitation can safely increase skeletal muscle strength and size in cardiovascular surgery patients.
Collapse
Affiliation(s)
- Hironaga Ogawa
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
- Department of Medical KAATSU Training, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Takahisa Nasuno
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hiroyuki Kaneda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Satoshi Katayanagi
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Hayato Ishizaka
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Yuta Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Azusa Uematsu
- Department of Health and Sport Sciences, Premedical Sciences, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan;
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka 433-8558, Japan;
| | - Hiroshi Yagi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Tibor Hortobágyi
- University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ Groningen, The Netherlands;
| | - Takashi Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| |
Collapse
|